Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Development of the Static Phase Separator

2008-06-29
2008-01-2041
During Lunar missions, NASA's new Orion Crew Exploration Vehicle (CEV) may benefit from mass savings and increased reliability by the use of a passive, capillary-driven Static Phase Separator (SPS) for urine collection, containment, and disposal in place of a rotary-fan separator and wastewater storage tank. The design of a capillary separator addresses unique challenges for microgravity fluid management for liquids with a wide range of possible contact angles and high air-to-liquid flow ratio. This paper presents the iterative process leading to a successful test in a reduced gravity aircraft of the SPS concept. Using appropriately scaled test conditions, the resulting prototype allows for a range of wetting properties with complete separation of liquid from gas.
Technical Paper

Shuttle/Mir Food Experience

1999-07-12
1999-01-2016
The Shuttle/Mir food system was based on a plan that included 50% U.S. food and 50% Russian food. Using inputs from crew evaluations, nutritional requirements, and analytical data, menus for each Long Duration Mission (LDM) were developed by the U.S. and Russian food specialists. The cosmonaut’ planned menus were identical while the astronaut’s menu differed slightly, based on personal preferences. Bonus food containers of astronaut’s favorite foods were provided to increase variety. Six out of 7 astronauts reported that the menu plan was seldom, if ever, followed. Five out of 7 astronauts ate most of their meals with the other crew members. In most cases, the bonus food containers were not opened until near the end of the mission. All crew members emphasized that variety was critical and that the use of Mir and Shuttle food together added a unique variety to the food system. Three of the 7 Mir astronauts lost significant weight during their stay on Mir.
Technical Paper

Water Analysis Results from Phase II of the NASA Early Human Testing Initiative 30-Day Closed Chamber Test

1997-07-01
972555
An important milestone in the ongoing effort by NASA to develop and refine closed-loop water recycling systems for human space flight was reached during the summer of 1996 with the successful completion of Phase II of the Lunar Mars Life Support Testing Program at Johnson Space Center. Part of Phase II involved testing a water-recycling system in a closed test chamber continuously occupied by four human subjects for thirty days. The Phase II crew began the test with a supply of water that had been processed and certified for human use. As the test progressed, humidity condensate, urine, and wastewater from personal hygiene and housekeeping activities were reclaimed and reused several times. Samples were collected from various points in the reclamation process during the thirty day test. The data verified the water-processing hardware can reliably remove wastewater contaminants and produce reclaimed water that meets NASA standards for hygiene- and potable-quality water.
Technical Paper

Potable Water Treatment and Transfer from Shuttle to Mir

1997-07-01
972461
To satisfy a requirement to supply water to Mir station, a process for treating iodinated water on the Shuttle was developed and implemented. The treatment system consists of packed columns for removing iodine and a syringe-based injection system for adding ionic silver, the biocide used in Mir water. Technical and potable grade water is produced and transferred in batches using collapsible 44-liter contingency water containers (CWCs). Silver is added to the water via injection of a solution from preloaded syringes. Minerals are also added to water destined for drinking. During the previous four Shuttle-Mir docking missions a total of 2781 liters (735 gallons) of water produced by the Shuttle fuel cells was processed using this method and transferred to Mir. To verify the quality of the processed water, samples were collected during flight and returned for chemical analysis.
Technical Paper

Microbial Colonization of Closed Life Support Chambers

1997-07-01
972414
The first two phases of the Lunar-Mars Life Support Test Project [LMLSTP] involved housing human volunteers in closed chambers that mimic future extraterrestrial life support systems. The Phase I test involved one person living for 15 days in a chamber with wheat as the primary means of air revitalization. The Phase II test involved 4 people living for 30 days in a chamber with physical/chemical air revitalization and waste water recycling. The consequences of closure on microbial ecology and the influence that microbes had on these closed environmental life support systems were determined during both tests. The air, water, and surfaces of each chamber were sampled for microbial content before, during, and after each test. The numbers of microbes on the Phase I habitation chamber surfaces increased with length of occupation.
Technical Paper

Evaluation of Wheat Growth and Chamber Performance in the Regenerative Life Support Systems Test Bed

1993-07-01
932172
An 84 day wheat crop was grown in the Variable Pressure Growth Chamber (VPGC) at Johnson Space Center (JSC). The VPGC is an atmospherically closed, controlled environment facility used to evaluate the use of higher plants as part of a regenerative life support system. The chamber has 10.6 m2 of growing area consisting of 480 pots of calcined clay support media. The chamber is lit by very high output, cool white fluorescent bulbs. Five wheat seeds were planted per pot giving a seeding density of 227 seeds·m-2. Pots were irrigated with a modified half strength Hoagland's nutrient solution three or six times per day depending on the crop age. At the plant canopy, the average temperature during the test was 22 ° C, relative humidity was maintained at 69%, CO2 concentration was 1000 ppm, photoperiod was continuous light, and the light intensity averaged 350 μmol·m-2·s-1.
Technical Paper

Advanced Air Revitalization System Modeling and Testing

1990-07-01
901332
To support manned lunar and Martian exploration, NASA/JSC and LESC are conducting an extensive evaluation of air revitalization subsystems. The major operations under study include regenerative CO2 removal and reduction; O2 and N2 production, storage, and distribution; humidity and temperature control; and trace contaminant control. This paper describes the ongoing analysis of air revitalization subsystems, including ASPEN PLUS™ modeling and breadboard test stand operation. A comprehensive analysis program based on a generalized block flow model is currently being developed to facilitate the evaluation of various processes and their interactions. Future plans for the development of this simulation will be discussed. ASPEN PLUS™ has been used to model a variety of the subsystems described above; application of this package in modeling CO2 removal and reduction will be discussed.
X