Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Influence of Cell Shape Between Square and Hexagonal Cells

Developing ultra thin wall ceramic substrates is necessary to meet stricter emissions regulations, in part because substrate cell walls need to be thinner in order to improve warm-up and light-off characteristics and lower exhaust system backpressure. However, the thinner the cell wall becomes, the poorer the mechanical and thermal characteristics of the substrate. Furthermore, the conditions under which the ultra thin wall substrates are used are becoming more severe. Therefore both the mechanical and thermal characteristics are becoming important parameters in the design of advanced converter systems. Whereas square cells are used world-wide in conjunction with oxidation and/or three-way catalysts, hexagonal cells, with features promoting a homogeneous catalyst coating layer, have found limited use as a NOx absorber due to its enhanced sulfur desorption capability.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

An Extruded Electrically Heated Catalyst: From Design Concept through Proven-Durability

The electrically-heated catalyst ( EHC ) has been established as an effective technology for lower-emission regulations. High electrical power consumption was a major concern for the EHC system in the past. This issue was addressed through the development of the EHC design and the alternator-powered EHC system combined with a light-off ( L/O ) catalyst. The subsequent challenges have been to prove the EHC's reliability and durability. NGK has developed a durable, extruded EHC for very severe exhaust system installations. In addition, the EHC's electrical connector system is required to meet high performance and reliability objectives under extreme environmental conditions unique to this application. This report describes the design concept of NGK's EHC including our new electrical connector system and durability results. In summary, the NGK EHC design concept has been confirmed to have excellent durability performance.