Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Status of the International Space Station (ISS) Trace Contaminant Control System

2009-07-12
2009-01-2353
A habitable atmosphere is a fundamental requirement for human spaceflight. To meet this requirement, the cabin atmosphere must be constantly scrubbed to maintain human life and system functionality. The primary system for atmospheric scrubbing of the US on-orbit segment (USOS) of the International Space Station (ISS) is the Trace Contaminant Control System (TCCS). As part of the Environmental Control and Life Support Systems' (ECLSS) atmosphere revitalization rack in the US Lab, the TCCS operates continuously, scrubbing trace contaminants generated primarily by two sources: the metabolic off-gassing of crew members and the off-gassing of equipment in the ISS. It has been online for approximately 95% of the time since activated in February 2001. The TCCS is comprised of a charcoal bed, a catalytic oxidizer, and a lithium hydroxide post-sorbent bed, all of which are designed to be replaced on-orbit when necessary.
Journal Article

Root Cause Assessment of Pressure Drop Rise of a Packed Bed of Lithium Hydroxide in the International Space Station Trace Contaminant Control System

2009-07-12
2009-01-2433
The trace contaminant control system (TCCS) located in the International Space Station's (ISS) U.S. laboratory module employs physical adsorption, thermal catalytic oxidation, and chemical adsorption to remove trace chemical contamination produced by equipment offgassing and anthropogenic sources from the cabin atmosphere. The chemical adsorption stage, consisting of a packed bed of granular lithium hydroxide (LiOH), is located after the thermal catalytic oxidation stage and is designed to remove acid gas byproducts that may be formed in the upstream oxidation stage. While in service on board the ISS, the LiOH bed exhibited a change in flow resistance that leading to flow control difficulties in the TCCS. Post flight evaluation revealed LiOH granule size attrition among other changes. An experimental program was employed to investigate mechanisms hypothesized to contribute to the change in the packed bed's flow resistance.
Journal Article

A Design Basis for Spacecraft Cabin Trace Contaminant Control

2009-07-12
2009-01-2592
Successful trace chemical contamination control is one of the components necessary for achieving good cabin atmospheric quality. While employing seemingly simple process technologies, sizing the active contamination control equipment must employ a reliable design basis for the trace chemical load in the cabin atmosphere. A simplified design basis that draws on experience gained from the International Space Station program is presented. The trace chemical contamination control design load refines generation source magnitudes and includes key chemical functional groups representing both engineering and toxicology challenges.
Technical Paper

Strategies to Mitigate Ammonia Release on the International Space Station

2007-07-09
2007-01-3186
The management of off-nominal situations on-board the International Space Station (ISS) is crucial to its continuous operation. Off-nominal situations can arise from virtually any aspect of ISS operations. One situation of particular concern is the inadvertent release of a chemical into the ISS atmosphere. In sufficient quantities, a chemical release can render the ISS uninhabitable regardless of the chemical's toxicity as a result of its effect on the hardware used to maintain the environment. This is certainly true with system chemicals which are integral components to the function and purpose of the system. Safeguards, such as design for minimum risk, multiple containment, hazard assessments, rigorous safety reviews, and others, are in place to minimize the probability of a chemical release to the ISS environment thereby allowing the benefits of system chemicals to outweigh the risks associated with them. The thermal control system is an example of such a system.
Technical Paper

Cabin Air Quality on Board Mir and the International Space Station - A Comparison

2007-07-09
2007-01-3219
The maintenance of the cabin atmosphere aboard spacecraft is critical not only to its habitability but also to its function. Ideally, air quality can be maintained by striking a proper balance between the generation and removal of contaminants. Both very dynamic processes, the balance between generation and removal can be difficult to maintain and control because the state of the cabin atmosphere is in constant evolution responding to different perturbations. Typically, maintaining a clean cabin environment on board crewed spacecraft and space habitats is a central function of the environmental control and life support (ECLS) system. While active air quality control equipment is deployed on board every vehicle to remove carbon dioxide, water vapor, and trace chemical components from the cabin atmosphere, perturbations associated with logistics, vehicle construction and maintenance, and ECLS system configuration influence the resulting cabin atmospheric quality.
Technical Paper

An Environmental Impact Assessment of Perfluorocarbon Thermal Working Fluid Use on Board Crewed Spacecraft

2006-07-17
2006-01-2218
The design and operation of crewed spacecraft requires identifying and evaluating chemical compounds that may present reactivity and compatibility risks with the environmental control and life support (ECLS) system. Such risks must be understood so that appropriate design and operational controls, including specifying containment levels, can be instituted or an appropriate substitute material selected. Operational experience acquired during the International Space Station (ISS) program has found that understanding ECLS system and environmental impact presented by thermal control system working fluids is imperative to safely operating any crewed space exploration vehicle. Perfluorocarbon fluids are used as working fluids in thermal control fluid loops on board the ISS. Also, payload hardware developers have identified perfluorocarbon fluids as preferred thermal control working fluids.
Technical Paper

Replacement for Internal Active Thermal Control System Fluid Sample Bag Material

2005-07-11
2005-01-3078
The International Space Station (ISS) Internal Active Thermal Control System (IATCS) uses a water based heat transport fluid with specific chemical parameters and additives for corrosion and microbial control. The fluid and hardware have experienced anomalies since activation of the United States Laboratory (USL), including chemical and possibly, microbial corrosion. The required sampling of the fluid has the crewmembers removing samples via an in-line sampling tool to perform real-time trace ammonia contamination tests using color change strips, and filling a 150 ml bag from each loop for the ground laboratory analyses. The former activity requires stable storage of the strips, and for the latter activity, it is highly desirable to return the ground sample as stable as possible. This paper describes the process for materials selection, test methods/set-up, results, and final recommendation for a replacement outer bag.
Technical Paper

Resistively-Heated Microlith-Based Adsorber for Carbon Dioxide and Trace Contaminant Removal

2005-07-11
2005-01-2866
An integrated sorber-based Trace Contaminant Control System (TCCS) and Carbon Dioxide Removal Assembly (CDRA) prototype was designed, fabricated and tested. It corresponds to a 1-person load. Performance over several adsorption/regeneration cycles was examined. Vacuum regenerations at effective time/ temperature conditions, and estimated power requirements were experimentally verified for the combined CO2/trace contaminant removal prototype. The current paper details the design and performance of this prototype during initial testing at CO2 and trace contaminant concentrations in the existing CDRA, downstream of the drier. Additional long-term performance characterization is planned at NASA. Potential system design options permitting associated weight, volume savings and logistic benefits, especially as relevant for long-duration space flight, are reviewed.
Technical Paper

International Space Station Automated Safing Responses to Hazardous Atmosphere

2004-07-19
2004-01-2549
Environmental Control and Life Support (ECLS) system functionality aboard the International Space Station (ISS) includes responding to various emergency conditions. The ISS requirements define three types of emergencies: fire, rapid depressurization, and hazardous or toxic atmosphere. The ISS has automatic integrated vehicle responses to each of these emergencies. These automated responses are designed to aid the crew in their response actions to the emergencies. The response to a hazardous atmosphere on board the ISS, including the automatic integrated vehicle response and crew actions, is the focus of this paper. Philosophies regarding the detection of and response to emergencies involving chemical releases are described. Vehicle configuration is discussed for currently supported automatic responses, and crew actions are defined for modules on orbit up to the addition of the Docking Compartment (DC1) in the assembly sequence.
Technical Paper

Post-Flight Sampling and Loading Characterization of Trace Contaminant Control Subassembly Charcoal

2003-07-07
2003-01-2487
Trace chemical contaminants produced by equipment offgassing and human metabolic processes are removed from the atmosphere of the International Space Station's U.S. Segment by a trace contaminant control subassembly (TCCS). The TCCS employs a combination of physical adsorption, thermal catalytic oxidation, and chemical adsorption processes to accomplish its task. A large bed of granular activated charcoal is a primary component of the TCCS. The charcoal contained in this bed, known as the charcoal bed assembly (CBA), is expendable and must be replaced periodically. Pre-flight engineering analyses based upon TCCS performance testing results established a service life estimate of 1 year. After nearly 1 year of cumulative in-flight operations, the first CBA was returned for refurbishment. Charcoal samples were collected and analyzed for loading to determine the best estimate for the CBA's service life.
Technical Paper

International Space Station Internal Thermal Control System Lab Module Simulator Build-Up and Validation

2003-07-07
2003-01-2519
As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To predict ITCS performance and address flight issues, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW® programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and it was validated in 2003. Even before complete validation the facility was used to address flight issues, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant.
Technical Paper

International Space Station Internal Thermal Control System Cold Plate/Fluid-Stability Test - Two Year Update

2003-07-07
2003-01-2518
Operation of the Internal Thermal Control System (ITCS) Cold Plate/Fluid-Stability Test Facility commenced on September 5, 2000. The facility was intended to provide advance indication of potential problems on board the International Space Station (ISS) and was designed: To be materially similar to the flight ITCS. To allow for monitoring during operation. To run continuously for three years. During the first two years of operation the conditions of the coolant and components were remarkably stable. During this same period of time, the conditions of the ISS ITCS significantly diverged from the desired state. Due to this divergence, the test facility has not been providing information useful for predicting the flight ITCS condition. Results of the first two years are compared with flight conditions over the same time period, showing the similarities and divergences.
Technical Paper

Selection of an Alternate Biocide for the International Space Station Internal Active Thermal Control System Coolant Loops

2003-07-07
2003-01-2568
The International Space Station (ISS) IATCS (Internal Active Thermal Control System) includes two internal coolant loops that use an aqueous based coolant for heat transfer. A silver salt biocide was used initially as an additive in the coolant formulation to control the growth and proliferation of microorganisms in the coolant loops. Ground-based and in-flight testing has demonstrated that the silver salt is rapidly depleted and not effective as a long-term biocide. Efforts are now underway to select an alternate biocide for the IATCS coolant loop with greatly improved performance. An extensive evaluation of biocides was conducted to select several candidates for test trials.
Technical Paper

Octafluoropropane Concentration Dynamics On Board the International Space Station

2003-07-07
2003-01-2651
Since activating the International Space Station's (ISS) Service Module in November 2000, archival air quality samples have shown highly variable concentrations of octafluoropropane in the cabin. This variability has been directly linked to leakage from air conditioning systems on board the Service Module, Zvezda. While octafluoropropane is not highly toxic, it presents a significant challenge to the trace contaminant control systems. A discussion of octafluoropropane concentration dynamics is presented and the ability of on board trace contaminant control systems to effectively remove octafluoropropane from the cabin atmosphere is assessed. Consideration is given to operational and logistics issues that may arise from octafluoropropane and other halocarbon challenges to the contamination control systems as well as the potential for effecting cabin air quality.
Technical Paper

Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

2000-07-10
2000-01-2239
For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow packed column operated in two ground-based low gravity facilities (two-second drop tower and KC-135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity.
Technical Paper

Nuclear Rockets for Interplanetary Propulsion

1960-01-01
600061
THE LOW-POWER SPACE NUCLEAR ROCKET conceived by NASA engineers is described in this paper. It is compared with the chemical rocket and the nuclear turboelectric ion propulsion system. In developing the concept for this low-power rocket, NASA engineers concentrated on attaining low weight and high hydrogen temperature, and on solving problems concerned with automatic control and operation of high-temperature reactors. It was presumed that the NASA 1.5 million-lb thrust engine would be available, and could place 25,000 lb in orbit, at the time the nuclear rocket is ready for test. As experience is gained reactors of higher power can be developed. These can, perhaps, be used as second stages of larger chemical boosters. Finally, high-power, high-temperature rockets for booster application can be undertaken.
X