Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Evaluation of Medium Duty DME Truck Performance -Field Test Results and PM Characteristics-

2007-01-23
2007-01-0032
The performance of a medium duty DME truck was evaluated by field tests and engine bench tests. The DME vehicle was given a public license plate on October 2004, after which running tests were continued on public roads and a test course. The DME vehicle could run the whole distance, about 500 km, without refueling. The average diesel equivalent fuel consumption of the fully loaded DME truck was 5.75 km/l, running at 80 km/h on public highways. Remedying several malfunctions that occurred in the power-train subsystems enhanced the vehicle performance and operation. The DME vehicle accumulated 13,000 km as of August, 2006 with no observed durability trouble of the fuel injection pump. Disassembly and inspection of the fuel injectors after 7,700 km operation revealed a few differences in the nozzle tip and the needle compared to diesel fuel operation. However, the injectors were used again after cleanup.
Technical Paper

Measurement of Trace Levels of Harmful Substances Emitted from a DME DI Diesel Engine

2005-05-11
2005-01-2202
In this report, trace levels of harmful substances, such as formaldehyde, acetaldehyde, SO2, benzene and so on, emitted from a DME fueled direct injection (DI) compression ignition (CI) engine were measured using a Fourier Transform Infrared (FTIR) emission analyzer. Results showed that the NO portion of NOx emissions with DME exceeded diesel fuel operation levels. DME fueling caused greater amounts of water than with diesel fuel operation. DME fueling was also associated with higher formaldehyde emissions than with diesel fuel operation. However, using an oxidation catalyst, formaldehyde could be decreased to a negligible level.
Technical Paper

Research and Development of a Medium Duty DME Truck

2005-05-11
2005-01-2194
Dimethyl ether (DME) has been attracting notable attention as a clean alternative fuel for diesel engines. The authors developed a medium duty DME truck, and investigated aspects of vehicle performance such as engine power, exhaust characteristics, fuel consumption, noise, in-vehicle systems, and so on. Results indicated that higher engine torque and power could be achieved with DME compared to diesel fuel operation of the base engine at any engine speed. Results also showed that emissions decreased dramatically, to 27% for NOx, 74% for HC, 95% for CO and 94% for PM (Particulate Matter) compared to maximum allowed Japanese 2003 emission regulations. The operating noise of the DME vehicle was slightly lower than the base vehicle with diesel fuel, because the combustion noise with DME was decreased compared to with diesel fuel operation. The DME vehicle was given a public license plate in October 2004, after which running test continued on public roads and on a test course.
Technical Paper

Lubricity of Liquefied Gas Assessment of Multi-Pressure/Temperature High-Frequency Reciprocating Rig (MPT-HFRR) -DME Fuel for Diesel

2004-06-08
2004-01-1865
In this study, a MPT-HFRR (Multi-Pressure/Temperature High-Frequency Reciprocating Rig) was manufactured based on a diesel fuel lubricity test apparatus. The MPT-HFRR was designed to be used for conventional test methods as well as for liquefied gas fuel tests. Lubricity tests performed on a calibration standard sample under both atmospheric pressure and high pressure produced essentially constant values, so it was determined that this apparatus could be used for assessing the lubricity of fuel. Using this apparatus, the improvement of lubricity due to the addition of a DME (Dimethyl Ether) fuel additive was investigated. It was found that when 50ppm or more of a fatty acid lubricity improver was added, the wear scar diameter converged to 400μm or less, and a value close to the measured result for Diesel fuel was obtained. The lubricity obtained was considered to be generally satisfactory.
Technical Paper

Engine Performance and Emission Characteristics of DME Diesel Engine With Inline Injection Pump Developed for DME

2004-06-08
2004-01-1863
The engine performance and exhaust characteristics of the DME-powered diesel engine with an injection system developed for DME were investigated. The injection pump is an inline type that can inject double amount of DME fuel compared to the base injection pump because the calorific value of DME is about half lower than that of diesel fuel. The effect of injection timing on engine performances such as thermal efficiency, engine torque, and exhaust characteristics were investigated. Maximum torque and power with DME could be achieved the same or greater level compared to diesel fuel operation. Considering over all engine performances, the best dynamic injection timings without EGR were -3, -3, -6 and -9 deg. ATDC in 1120, 1680, 2240 and 2800 rpm engine speeds respectively in this experiment.
Technical Paper

Spectroscopic Analysis of Combustion in the DME Diesel Engine

2004-03-08
2004-01-0089
For better understanding of the combustion characteristics in a direct injection dimethyl ether (DME) engine, the chemiluminescences of a burner flame and in-cylinder flame were analyzed using the spectroscopic method. The emission intensities of chemiluminescences were measured by a photomultiplier after passing through a monochrome-spectrometer. For the burner flame, line spectra were found nearby the wave length of 310 nm, 430 nm and 515 nm, arising from OH, CH and C2 radicals, respectively. For the in-cylinder flame, a strong continuous spectrum was found from 340 nm wave length to 550 nm. Line spectra were also detected nearby 310 nm, 395 nm and 430 nm, arising from OH, HCHO, and C2 radicals, respectively, partially overlapping with the continuous spectrum. Of these line spectra, 310 nm of OH radical did not overlapped with the continuous spectrum.
Technical Paper

Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine

2003-10-27
2003-01-3192
To date, the DME combustion mechanism has been investigated by in-cylinder gas sampling, numerical calculations and observation of combustion radicals. It has been possible to quantify the emission intensities of in-cylinder combustion using a monochromator, and to observe the emitting species as images by using band-pass filters. However, the complete band images were not observed since the broadband (thermal) intensity may be stronger than band spectra intensities. Emission intensities of DME combustion radicals from a pre-mixed burner flame have been measured using a spectroscope and photomultiplier. Results were compared to other fuels, such as n-butane and methane, then, in this study, to better understand the combustion characteristics of DME, emission intensities near CH bands of an actual DI diesel engine fueled with DME were measured, and band spectra emitted from the engine were defined. Near TDC, emission intensities did not vary with wavelength.
Technical Paper

Spectroscopic Analysis of Combustion Flame Fueled with Dimethyl Ether (DME)

2003-05-19
2003-01-1797
To better understand the combustion characteristics of DME, emission intensities of DME combustion radicals from a pre-mixed burner flame were measured by a spectroscope and photomultiplier, Results were compared to other fuels, such as methane and butane. Large peaks in the band spectra from pre-mixed and diffusion DME flames were found near 310 nm, 430 nm, and 515 nm, arising from OH, CH and C2, respectively. The DME emission intensities decreased with increasing the equivalence ratio in this study. Notably, the relative decrease in the C2 band spectra peak was greater than that of the OH band. Comparing the pre-mixed DME and butane flames, the butane band spectra peaks were similar in shape, but much stronger than those for DME. However, it was remarkable that CH and C2 band spectra peaks decreased only slightly with increase in equivalence ratio compared to the DME case.
Technical Paper

Performance and Emissions of a DI diesel engine Operated with LPG and Cetane Enhancing additives

2003-05-19
2003-01-1920
Experiments were conducted to operate a direct injection (DI) diesel engine by using Liquefied Petroleum Gas (LPG) as a main fuel. Aliphatic Hydrocarbon (AH), cetane enhancing additive and lubricating additive were also added to the LPG so that smooth operation was achieved with a wide range of engine loads. Since the lubricity of LPG is lower than the diesel fuel therefore lubricating additive was employed to enhance the lubricity of LPG blended fuel. Furthermore, prototype LPG diesel truck was developed in this work, and the mileage reached about 70,000 km without any major failure. Prototype truck has good starting, good drive-off, acceleration and braking characteristics.
Technical Paper

Spray Characteristics of LPG Direct Injection Diesel Engine

2003-03-03
2003-01-0764
In this study, spray images of LPG Blended Fuels (LBF) for DI diesel engines were observed using a constant volume chamber at high ambient temperature and pressure, and the spray characteristics of the fuel were investigated. The LBF spray started to vaporize at the injector tip and the outer downstream regions of the spray, like diesel fuel, because of the high temperature at these areas. There were more vaporized areas compared to diesel fuel. Sufficient fuel injection volume and volatility of LBF resulted in good fuel-air mixture, then, THC emissions decreased compared to diesel fuel at high load engine test conditions. Butane spray image could not be observed at the injector tip. It seems that the high temperature of the injector tip caused the butane spray to vaporize rapidly. Spray tip penetration with LBF and butane were equal or greater than with diesel fuel. The high volatility of LBF and butane had no noticeable effect on spray penetration.
Technical Paper

Atomization Characteristics for Various Ambient Pressure of Dimethyl Ether (DME)

2002-05-06
2002-01-1711
Recently, dimethyl ether (DME) has been attracting much attention as a clean alternative fuel, since the thermal efficiency of DME powered diesel engine is comparable to diesel fuel operation and soot free combustion can be achieved. In this experiment, the effect of ambient pressure on DME spray was investigated with observation of droplet size such as Sauter mean diameter (SMD) by the shadowgraph and image processing method. The higher ambient pressure obstructs the growth of DME spray, therefore faster breakup was occurred, and liquid column was thicker with increasing the ambient pressure. Then engine performances and exhaust emissions characteristics of DME diesel engine were investigated with various compression ratios. The minimum compression ratio for the easy start and stable operation was obtained at compression ratio of about 12.
X