Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Scene Structure Classification as Preprocessing for Feature-Based Visual Odometry

2018-04-03
2018-01-0610
Cameras and image processing hardware are rapidly evolving technologies, which enable real-time applications for passenger cars, ground robots, and aerial vehicles. Visual odometry (VO) algorithms estimate vehicle position and orientation changes from the moving camera images. For ground vehicles, such as cars, indoor robots, and planetary rovers, VO can augment movement estimation from rotary wheel encoders. Feature-based VO relies on detecting feature points, such as corners or edges, in image frames as the vehicle moves. These points are tracked over frames and, as a group, estimate motion. Not all detected points are tracked since not all are found in the next frame. Even tracked features may not be correct since a feature point may map to an incorrect nearby feature point. This can depend on the driving scenario, which can include driving at high speed or in the rain or snow.
Journal Article

Efficient Global Surrogate Modeling Based on Multi-Layer Sampling

2018-04-03
2018-01-0616
Global surrogate modeling aims to build surrogate model with high accuracy in the whole design domain. A major challenge to achieve this objective is how to reduce the number of function evaluations to the original computer simulation model. To date, the most widely used approach for global surrogate modeling is the adaptive surrogate modeling method. It starts with an initial surrogate model, which is then refined adaptively using the mean square error (MSE) or maximizing the minimum distance criteria. It is observed that current methods may not be able to effectively construct a global surrogate model when the underlying black box function is highly nonlinear in only certain regions. A new surrogate modeling method which can allocate more training points in regions with high nonlinearity is needed to overcome this challenge. This article proposes an efficient global surrogate modeling method based on a multi-layer sampling scheme.
Technical Paper

Enhanced Two-stage Ignition Delay Model Based on Molar Fraction of Fuel Components for SI Engine Simulation

2018-04-03
2018-01-0849
Simulation based design and control optimization is widely used to assist the development of highly complex modern downsized turbocharged gasoline direct injection (GDI) engines. In such engines, knock phenomenon is a major constraint that limits performance and fuel economy enhancements. Thus, an accurate knock prediction model is critically important for virtual engine development process. In this paper, an enhanced ignition delay model is proposed for spark ignition (S)I combustion model based on previously developed empirical two-stage ignition delay model using fuel blends [1]. The ignition delay model provides a capability of predicting ignition delay of the end-gas zone for different fuel blends without additional calibration when fuel blending ratio changes. To adapt the ignition delay model to the SI combustion environment, the model is modified to have the sensitivity to the dilution effect by residual gas.
Journal Article

High Strain Rate Mechanical Characterization of Carbon Fiber Reinforced Polymer Composites Using Digital Image Correlations

2017-03-28
2017-01-0230
The introduction of carbon fiber reinforced polymer (CFRP) composites to structural components in lightweight automotive structures necessitates an assessment to evaluate that their crashworthiness dynamic response provides similar or higher levels of safety compared to conventional metallic structures. In order to develop, integrate and implement predictive computational models for CFRP composites that link the materials design, molding process and final performance requirements to enable optimal design and manufacturing vehicle systems for this study, the dynamic mechanical response of unidirectional (UD) and 2x2 twill weave CRFP composites was characterized at deformation rates applicable to crashworthiness performance. Non-standardized specimen geometries were tested on a standard uniaxial frame and an intermediate-to-high speed dynamic testing frame, equipped with high speed cameras for 3D digital image correlation (DIC).
Technical Paper

Evaluation of a Stereo Visual Odometry Algorithm for Passenger Vehicle Navigation

2017-03-28
2017-01-0046
To reliably implement driver-assist features and ultimately self-driving cars, autonomous driving systems will likely rely on a variety of sensor types including GPS, RADAR, LASER range finders, and cameras. Cameras are an essential sensory component because they lend themselves to the task of identifying object types that a self-driving vehicle is likely to encounter such as pedestrians, cyclists, animals, other cars, or objects on the road. In this paper, we present a feature-based visual odometry algorithm based on a stereo-camera to perform localization relative to the surrounding environment for purposes of navigation and hazard avoidance. Using a stereo-camera enhances the accuracy with respect to monocular visual odometry. The algorithm relies on tracking a local map consisting of sparse 3D map points. By tracking this map across frames, the algorithm makes use of the full history of detected features which reduces the drift in the estimated motion trajectory.
Technical Paper

Smoke Particle Sizes in Low-Gravity and Implications for Spacecraft Smoke Detector Design

2009-07-12
2009-01-2468
This paper presents results from a smoke detection experiment entitled Smoke Aerosol Measurement Experiment (SAME) which was conducted in the Microgravity Science Glovebox on the International Space Station (ISS) during Expedition 15. Five different materials representative of those found in spacecraft were pyrolyzed at temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow conditions. The sample materials were Teflon®, Kapton®, cellulose, silicone rubber and dibutylphthalate. The transport time from the smoke source to the detector was simulated by holding the smoke in an aging chamber for times ranging from 10 to1800 seconds. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis.
Journal Article

Measurement of Smoke Particle Size under Low-Gravity Conditions

2008-06-29
2008-01-2089
Smoke detection experiments were conducted in the Microgravity Science Glovebox (MSG) on the International Space Station (ISS) during Expedition 15 in an experiment entitled Smoke Aerosol Measurement Experiment (SAME). The preliminary results from these experiments are presented. In order to simulate detection of a prefire overheated-material event, samples of five different materials were heated to temperatures below the ignition point. The smoke generation conditions were controlled to provide repeatable sample surface temperatures and air flow conditions. The smoke properties were measured using particulate aerosol diagnostics that measure different moments of the size distribution. These statistics were combined to determine the count mean diameter which can be used to describe the overall smoke distribution.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

A Step Towards CO2-Neutral Aviation

2007-09-17
2007-01-3790
An approximation method for evaluation of the caloric equations used in combustion chemistry simulations is described. The method is applied to generate the equations of specific heat, static enthalpy, and Gibb's free energy for fuel mixtures of interest to gas turbine engine manufacturers. Liquid-phase fuel properties are also derived. The fuels include JP-8, synthetic fuel, and two fuel blends consisting of a mixture of JP-8 and synthetic fuel. The complete set of fuel property equations for both phases are implemented into a computational fluid dynamics (CFD) flow solver database, and multi-phase, reacting flow simulations of a well-tested liquid-fueled combustor are performed. The simulations are a first step in understanding combustion system performance and operational issues when using alternate fuels, at practical engine operating conditions.
Technical Paper

Validation of Vehicle NVH Performance using Experimental Modal Testing and In-Vehicle Dynamic Measurements

2007-05-15
2007-01-2320
NVH targets for future vehicles are often defined by utilizing a competitive benchmarking vehicle in conjunction with an existing production and/or reference vehicle. Mode management of full vehicle modes is one of the most effective and significant NVH strategies to achieve such targets. NVH dynamic characteristics of a full vehicle can be assessed and quantified through experimental modal testing for determination of global body mode resonance frequency, damping property, and mode shape. Major body modes identified from full vehicle modal testing are primarily dominated by the vehicle's body-in-white structure. Therefore, an estimate of BIW modes from full vehicle modes becomes essential, when only full vehicle modes from experimental modal testing exist. Establishing BIW targets for future vehicles confines the fundamental NVH behavior of the full vehicle.
Technical Paper

Application of the Modal Compliance Technique to a Vehicle Body in White

2007-05-15
2007-01-2355
This paper describes the application of the modal compliance method to a complex structure such as a vehicle body in white, and the extension of the method from normal modes to the complex modes of a complete vehicle. In addition to the usual bending and torsion calculations, the paper also describes the application of the method to less usual tests such as second torsion, match-boxing and breathing. We also show how the method can be used to investigate the distribution of compliance throughout the structure.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels

2007-04-16
2007-01-0201
Computational fluid dynamic (CFD) simulations that include realistic combustion/emissions chemistry hold the promise of significantly shortening the development time for advanced high-efficiency, low-emission engines. However, significant challenges must be overcome to realize this potential. This paper discusses these challenges in the context of diesel combustion and outlines a technical program based on the use of surrogate fuels that sufficiently emulate the chemical complexity inherent in conventional diesel fuel.
Technical Paper

Tailor-Welded Aluminum Blanks for Liftgate Inner

2007-04-16
2007-01-0421
Tailor welded steel blanks have long been applied in stamping of automotive parts such as door inner, b-pillar, rail, sill inner and liftgate inner, etc. However, there are few known tailor welded aluminum blanks in production. Traditional laser welding equipment simply does not have the capability to weld aluminum since aluminum has much higher reflectivity than steel. Welding quality is another issue since aluminum is highly susceptible to pin holes and undercut which leads to deterioration in formability. In addition, high amount of springback for aluminum panels can result in dimension control problem during assembly. A tailor-welded aluminum blank can help reducing dimension variability by reducing the need for assembly. In this paper, application of friction stir and plasma arc welded blanks on a liftgate inner will be discussed.
Technical Paper

Sensitivity Analysis of Powertrain Cooling System Performance

2007-04-16
2007-01-0598
This paper identifies the difference in powertrain cooling system content levels using a nominal and a +3 Standard deviation maximum temperature design approach. Variation simulation analysis tools are used along with a 1-D cooling system performance model to predict resulting temperature distribution for different combinations of input variable populations. The analysis will show differential in powertrain cooling system content, mass, and impact to fuel economy for a nominal vs. +3 sigma design approach.
Technical Paper

Simulation Process to Investigate Suspension Sensitivity to Brake Judder

2007-04-16
2007-01-0590
Brake judder, which is a low frequency excitation of the suspension and thus, the body structure during low-G braking, is mainly felt at the steering wheel and throughout the vehicle structure. Brake judder is a problem that costs manufacturers millions of dollars in warranty cost and undesirable trade offs. The magnitude of judder response depends not only on the brake torque variation, but also on the suspension design character-istics. This paper discusses the judder simulation process using ADAMS software to investigate the suspension design sensitivity to the first order brake judder performance. The paper recommends “tuning knobs” to suspension designers and vehicle development engineers to resolve issues in the design and development stages. Various suspension design varia-bles including geometry and compliances as well as brake related characteristics were investigated.
Technical Paper

Effect of Cross Flow on Performance of a PEM Fuel Cell

2007-04-16
2007-01-0697
A serpentine flow channel is one of the most common and practical channel layouts for a PEM fuel cell since it ensures the removal of water produced in a cell. While the reactant flows along the flow channel, it can also leak or cross to neighboring channels via the porous gas diffusion layer due to a high pressure gradient. Such a cross flow leads to effective water removal in a gas diffusion layer thus enlarging the active area for reaction although this cross flow has largely been ignored in previous studies. In this study, neutron radiography is applied to investigate the liquid water accumulation and its effect on the performance of a PEM fuel cell. Liquid water tends to accumulate in the gas diffusion layer adjacent to the flow channel area while the liquid water formed in the gas diffusion layer next to the channel land area seems to be effectively removed by the cross leakage flow between the adjacent flow channels.
Technical Paper

Optimization of Head Impact Waveform to Minimize HIC

2007-04-16
2007-01-0759
To mitigate head impact injuries of vehicle occupants in impact accidents, the FMVSS 201 requires padding of vehicle interior so that under the free-moving-head-form impact, the head injury criterion (HIC) is below the limit. More recently, pedestrian head impact on the vehicle bonnet has been a subject being studied and regulated as requirements to the automobile manufacturers. Over the years, the square wave has been considered as the best waveform for head impacts, although it is impractical to achieve. This paper revisits the head impact topic and challenges the optimality of aiming at the square waveform. It studies several different simple waveforms, with the objective to achieve minimal HIC or minimal crush space required in head-form impacts. With that it is found that many other waveforms can be more efficient and more practical than the square wave, especially for the pedestrian impact.
Technical Paper

Development of Active Suspension Control for Combined Handling and Rollover Propensity Enhancement

2007-04-16
2007-01-0826
A conceptual study of a control strategy that improves vehicle handling during cornering maneuvers while improving vehicle roll stability is presented. From the vehicle rollover propensity estimated by vehicle states, the proposed control strategy generates different actuation forces between the front and the rear suspensions to meet its handling and roll stability objectives. Simulation results for different vehicle maneuvers show that the proposed algorithm can effectively balance between enhanced handling and rollover stability.
Technical Paper

Strength Prediction and Correlation of Tow Hook Systems using Finite Element Analyses

2007-04-16
2007-01-1206
In this paper, tow hook systems and their functional objectives are briefly introduced. General analysis considerations in strength prediction of a tow hook system are described. These considerations contain nonlinear, clamping and material property simulations. Connections and loading simulation of a tow hook system model are discussed in details. A correlation example of a tow hook system is illustrated. This study shows that detailed modeling of a tow hook system is a fundamental requirement for accurate strength prediction and good correlation between finite element analysis and testing.
X