Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of a Hybrid-Electric Medium-HD Demonstrator Vehicle with a Pent-Roof SI Natural Gas Engine

2024-06-12
2024-37-0026
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, lower carbon intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions.
Technical Paper

Stress Generation in Large Pouch Cells Under Cycling and Abuse Conditions

2024-04-09
2024-01-2196
Pouch cells are increasingly popular form factors for the construction of energy storage systems in electric vehicles of all classes. Knowledge of the stress generated by these higher capacity pouch cells is critical to properly design battery modules and packs for both normal and abnormal operation. Existing literature predominantly offers data on smaller pouch cells with capacities of less than 10 Ah, leaving a gap in our understanding of the behavior of these larger cells. This experimental study aimed to bridge this knowledge gap by measuring loads and stresses in constrained 65 Ah pouch cells under both cycling and abuse conditions. To capture the desired responses, a load cell was located within a robust fixture to measure cell stress in real time after the application of a preload of approximately 30 kilograms or 294 N, equivalent to a pressure of 0.063 bar, with a fixed displacement.
Technical Paper

Post-Mortem Analysis of DAAAC and Conventionally Aged Aftertreatment Systems

2023-10-31
2023-01-1656
Upcoming regulations from CARB and EPA will require diesel engine manufacturers to validate aftertreatment durability with full useful life aged components. To this end, the Diesel Aftertreatment Accelerated Aging Cycle (DAAAC) protocol was developed to accelerate aftertreatment aging by accounting for hydrothermal aging, sulfur, and oil poisoning deterioration mechanisms. Two aftertreatment systems aged with the DAAAC protocol, one on an engine and the other on a burner system, were directly compared to a reference system that was aged to full useful life using conventional service accumulation. After on-engine emission testing of the fully aged components, DOC and SCR catalyst samples were extracted from the aftertreatment systems to compare the elemental distribution of contaminants between systems. In addition, benchtop reactor testing was conducted to measure differences in catalyst performance.
Journal Article

Low Ambient Temperature Impact on a Low NOX Demonstration System

2023-04-11
2023-01-0361
In 2020, CARB adopted the low NOX omnibus ruling, which provided revisions to on-road heavy duty engine compliance standards and certification practices. As part of the updates to the regulation, CARB has introduced a new in-use vehicle testing process that broadens the operation modes tested and considers the manufacturer’s intended vehicle application. Compared to the previous method, or the Not-to-Exceed approach, cold start and low ambient temperature provisions were included as part of the updates. The inclusion of low temperature operation requires the OEMs to design a robust engine and aftertreatment package that extends NOX conversion performance. The following work discusses the NOX emissions performance impact in a low temperature ambient environment. The engine and aftertreatment system evaluated was designed to comply with CARB’s low NOX regulations. The cycles tested included the CARB Southern NTE cycle and an FTP-LLC protocol.
Technical Paper

Challenges and Opportunities with Direct-Injection Hydrogen Engines

2023-04-11
2023-01-0287
Stringent emissions regulations and the need for lower tailpipe emissions are pushing the development of low-carbon alternative fuels. H2 is a zero-carbon fuel that has the potential to lower CO2 emissions from internal combustion engines (ICEs) significantly. Moreover, this fuel can be readily implemented in ICEs with minor modifications. Batteries can be argued to be a good zero tailpipe emission solution for the light-duty sector; however, medium and heavy-duty sectors are also in need of rapid decarbonization. Current strategies for H2 ICEs include modification of the existing spark ignition (SI) engines to run on port fuel injection (PFI) systems with minimal changes from the current compressed natural gas (CNG) engines. This H2 ICE strategy is limited by knock and pre-ignition. One solution is to run very lean (lambda >2), but this results in excessive boosting requirements and may result in high NOx under transient conditions.
Technical Paper

DAAAC Protocol for Durability Demonstration of Diesel Aftertreatment Systems: Emissions Performance Validation

2022-08-30
2022-01-1015
Aftertreatment durability demonstration is a required validation exercise for on-road medium and heavy-duty diesel engine certification. The demonstration is meant to validate emissions compliance for the engine and aftertreatment system at full useful life or FUL. Current certification practices allow engine manufacturers to complete partial aging and then extrapolate emissions performance results to FUL. While this process reduces the amount of service accumulation time, it does not consider changes in the aftertreatment deterioration rate. Rather, deterioration is assumed to occur at a linear rate, which may lead to false conclusions relating to emissions compliance. With CARB and EPA’s commitment to the reduction of criteria emissions, emphasis has also been placed on revising the existing certification practices. The updated practices would require engine manufacturers to certify with an aftertreatment system aged to FUL.
Technical Paper

Greenhouse Gas Reduction from EnviroKool Piston in Lean Burn Natural Gas and Diesel Dual Fuel Heavy Duty Engine

2022-06-14
2022-37-0004
Heavy-duty (HD) internal combustion engines (ICE) have achieved quite high brake thermal efficiencies (BTE) in recent years. However, worldwide GHG regulations have increased the pace towards zero CO2 emissions. This, in conjunction with the ICE reaching near theoretical efficiencies means there is a fundamental lower limit to the GHG emissions from a conventional diesel engine. A large factor in achieving lower GHG emissions for a given BTE is the fuel, in particular its hydrogen to carbon ratio. Substituting a fuel like diesel with compressed natural gas (CNG) can provide up to 25% lower GHG at the same BTE with a sufficiently high substitution rate. However, any CNG slip through the combustion system is penalized heavily due to its large global warming potential compared to CO2. Therefore, new technologies are needed to reduce combustion losses in CNG-diesel dual fuel engines.
Journal Article

Development of Steady State NO2:NOX Control via an Independent Nitric Decomposition System for the Exhaust Composition Transient Operation Laboratory

2022-03-29
2022-01-0548
Southwest Research Institute (SwRI) utilizes the burner-based Exhaust Composition Transient Operation LaboratoryTM (ECTO-Lab) to accurately simulate transient engines and replicate real exhaust that is produced by light and heavy-duty engines for aftertreatment aging and evaluations. This system can generate and dose NOX over transient cycles from a range of 20 ppm to 1200 ppm where the NOX is generated by the in-situ decomposition and combustion of a fuel-bound, nitrogen containing compound. During the combustion and decomposition of the nitrogen containing compound over 95 % of the NOX generated is in the form of NO. To authentically simulate exhaust gases, it is necessary to account for the distribution of the NO to the NO2. Since previous work has established that the decomposition of nitric acid can be utilized as a method to generate NO2, the objective of this project was to develop control of NO and NO2 within SwRI’s ECTO-Lab through the decomposition of nitric acid.
Technical Paper

Combustion Stabilization for Enriched D-EGR Applications via Air-Assisted Pre-Chambers

2021-04-06
2021-01-0481
The dedicated exhaust gas recirculation (D-EGR®) concept developed by Southwest Research Institute (SwRI) has demonstrated a thermal efficiency increase on several spark-ignited engines at both low and high-load conditions. Syngas (H2+CO) is produced by the dedicated cylinder (D-cyl) which operates at a rich air-fuel ratio. The syngas helps to stabilize combustion under highly dilute conditions at low loads as well as mitigating knock at high loads. The D-cyl produces all the EGR for the engine at a fixed rate of approximately 25% EGR for a four-cylinder engine and 33% EGR for a six-cylinder engine. The D-cyl typically runs up to an equivalence ratio of 1.4 for gasoline-fueled engines, beyond which the combustion becomes unstable due to the decreasing laminar burning velocity caused by rich conditions. Conventional active-fueled and passive pre-chambers have benefits of inducing multi-site ignition and enhancing turbulence in the main chamber.
Technical Paper

Comparison of Partial and Total Dilution Systems for the Measurement of Polycyclic Aromatic Hydrocarbons and Hydrocarbon Speciation in Diesel Exhaust

2020-09-15
2020-01-2190
Two methods of sampling exhaust emissions are typically used for characterizing emissions from diesel engines: total dilution which uses a constant volume sampling (CVS) system and partial flow dilution which relies on proportionally diluting a small part from the main exhaust stream. The CVS dilutes the entire exhaust flow to a constant volumetric flowrate which allows for proportional sampling of the exhaust species during transient engine operation. For partial dilution sampling during transient engine operation, obtaining a proportional sample is more rigorous and dilution of the extracted sample must be continuously changed throughout the cycle in order for the extracted sample flowrate to be proportional to the continuously changing exhaust flow. Typically, regulated emissions measured using both methods for an engine platform have shown good correlation. The focus for this work was on the experimental investigation of the two methods for the measurement of unregulated species.
Technical Paper

Semi-Volatile Organic Compounds from a Combined Dual Port Injection/Direct-Injection Technology Light-Duty Gasoline Vehicle

2019-09-09
2019-24-0051
Gasoline direct injection (GDI) has changed the exhaust composition in comparison with the older port fuel injection (PFI) systems. More recently, light-duty vehicle engine manufactures have combined these two technologies to take advantage of the knock benefits and fuel economy of GDI with the low particulate emission of PFI. These dual injection strategy engines have made a change in the combustion emission composition produced by these engines. Understanding the impact of these changes is essential for automotive companies and aftertreatment developers. A novel sampling system was designed to sample the exhaust generated by a dual injection strategy gasoline vehicle using the United States Federal Test Procedure (FTP). This sampling system was capable of measuring the regulated emissions as well as collecting the entire exhaust from the vehicle for measuring unregulated emissions.
Technical Paper

Utilizing Multiple Combustion Modes to Increase Efficiency and Achieve Full Load Dual-Fuel Operation in a Heavy-Duty Engine

2019-04-02
2019-01-1157
Reactivity Controlled Compression Ignition (RCCI) natural gas/diesel dual-fuel combustion has been shown to achieve high thermal efficiency with low NOX and PM emissions, but has traditionally been limited to low to medium loads. High BMEP operation typically requires high substitution rates (i.e., >90% NG), which can lead to high cylinder pressure, pressure rise rates, knock, and combustion loss. In previous studies, compression ratio was decreased to achieve higher load operation, but thermal efficiency was sacrificed. For this study, a multi-cylinder heavy-duty engine that has been modified for dual-fuel operation (diesel direct-injection and natural gas (NG) fumigated into the intake stream) was used to explore RCCI and other dual-fuel combustion modes at high compression ratio, while maintaining stock lug curve capability (i.e., extending dual-fuel operation to high loads where conventional diesel combustion traditionally had to be used).
Technical Paper

Performance Evaluation of Dedicated EGR on a 12 L Natural Gas Engine

2019-04-02
2019-01-1143
Southwest Research Institute (SwRI) converted a Cummins ISX 12 G in-line six-cylinder engine to a Dedicated EGRTM (D-EGRTM) configuration. D-EGR is an efficient way to produce reformate and increase the EGR rate. Two of the six cylinders were utilized as the dedicated cylinders. This supplied a nominal EGR rate of 33% compared to the baseline engine utilizing 15-20% EGR. PFI injectors were added to dedicated cylinders to supply the extra fuel required for reformation. The engine was tested with a high energy dual coil offset (DCO®) ignition system. The stock engine was tested at over 70 points to map the performance, 13 of these points were at RMC SET points. The D-EGR converted engine was tested at the RMC SET points for comparison to the baseline. The initial results from the D-EGR conversion show a 4% relative BTE improvement compared to the baseline due to the increased EGR rate at 1270 rpm, 16 bar BMEP.
Technical Paper

Development of a Natural Gas Engine with Diesel Engine-like Efficiency Using Computational Fluid Dynamics

2019-04-02
2019-01-0225
Present day natural gas engines have a significant efficiency disadvantage but benefit with low carbon-dioxide emissions and cheap three-way catalysis aftertreatment. The aim of this work is to improve the efficiency of a natural gas engine on par with a diesel engine. A Cummins-Westport ISX12-G (diesel) engine is used for the study. A baseline model is validated in three-dimensional Computational Fluid Dynamics (CFD). The challenge of this project is adapting the diesel engine for the natural gas fuel, so that the increased squish area of the diesel engine piston can be used to accomplish faster natural gas burn rates. A further increase efficiency is achieved by switching to D-EGR technology. D-EGR is a concept where one or more cylinders are run with excess fueling and its exhaust stream, containing H2 and CO, is cooled and fed into the intake stream. With D-EGR although there is an in-cylinder presence of a reactive H2-CO reformate, there is also higher levels of dilution.
Technical Paper

Methods of Improving Combustion Efficiency in a High-Efficiency, Lean Burn Dual-Fuel Heavy-Duty Engine

2019-01-15
2019-01-0032
Combustion losses are one of the largest areas on inefficiency in natural gas/diesel dual-fuel engines, especially when compared to the traditional diesel engines on which they are based. These losses can vary from 1-2% at high load, to more than 6% of the total fuel energy at part load conditions. For diesel/natural gas dual-fuel engines, the three main sources of combustion losses are: bulk losses (increasing air-fuel ratio, AFR, to the premixed fuel’s lean flammability limit), crevice losses (premixed fuel trapped near valve pockets and top ring lands unable to oxidize), and blow-through losses (fumigated fuel/air intake charge passes through the cylinder and out the exhaust valve during valve overlap). In order to improve overall engine efficiency and decrease greenhouse gas emissions, these losses must be minimized.
Technical Paper

Polycyclic Aromatic Hydrocarbons in Diesel Engine Exhaust Both with and without Aftertreatment

2018-09-10
2018-01-1812
Since the conception of the internal combustion engine, smoky and ill-smelling exhaust was prevalent. Over the last century, significant improvements have been made in improving combustion and in treating the exhaust to reduce these effects. One group of compounds typically found in exhaust, polycyclic aromatic hydrocarbons (PAH), usually occurs at very low concentrations in diesel engine exhaust. Some of these compounds are considered carcinogenic, and most are considered hazardous air pollutants (HAP). Many methods have been developed for sampling, handling, and analyzing PAH. For this study, an improved method for dilute exhaust sampling was selected for sampling the PAH in diesel engine exhaust. This sampling method was used during transient engine operation both with and without aftertreatment to show the effect of aftertreatment.
Technical Paper

Effect of Lubricant Oil on Particle Emissions from a Gasoline Direct Injection Light-Duty Vehicle

2018-09-10
2018-01-1708
Gasoline direction injection (GDI) engines have been widely used by light-duty vehicle manufacturers in recent years to meet stringent fuel economy and emissions standards. Particulate Matter (PM) mass emissions from current GDI engines are primarily composed of soot particles or black carbon with a small fraction (15% to 20%) of semi-volatile hydrocarbons generated from unburned/partially burned fuel and lubricating oil. Between 2017 and 2025, PM mass emissions regulations in the USA are expected to become progressively more stringent going down from current level of 6 mg/mile to 1 mg/mile in 2025. As PM emissions are reduced through soot reduction, lubricating oil derived semi-volatile PM is expected to become a bigger fraction of total PM mass emissions.
Technical Paper

Solid Particle Number and Ash Emissions from Heavy-Duty Natural Gas and Diesel w/SCRF Engines

2018-04-03
2018-01-0362
Solid and metallic ash particle number (PN) and particulate matter (PM) mass emission measurements were performed on a heavy-duty (HD) on-highway diesel engine and a compressed natural gas (CNG) engine. Measurements were conducted under transient engine operation that included the FTP, WHTC and RMC. Both engines were calibrated to meet CARB ultra low NOX emission target of 0.02 g/hp-hr, a 90% reduction from current emissions limit. The HD diesel engine final exhaust configuration included a number of aftertreatement sub-systems in addition to a selective catalytic reduction filter (SCRF). The stoichiometric CNG engine final configuration included a closed coupled Three Way Catalyst (ccTWC) and an under floor TWC (ufTWC). The aftertreatment systems for both engines were aged for a full useful life (FUL) of 435,000 miles, prior to emissions testing. PM mass emissions from both engines were comparable and well below the US EPA emissions standard.
Technical Paper

Estimation of Intake Oxygen Mass Fraction for Transient Control of EGR Engines

2018-04-03
2018-01-0868
Cooled Exhaust Gas Recirculation (EGR) technology provides significant benefits such as better cycle efficiency, knock tolerance and lower NOx/PM emissions. However, EGR dilution also poses challenges in terms of combustion stability, power density and control. Conventional control schemes for EGR engines rely on a differential pressure sensor combined with an orifice flow model to estimate EGR flow rate. While EGR rate is an important quantity, intake O2 mass fraction may be a better indication of EGR, capturing quantity as well as “quality” of EGR. SwRI has successfully used intake O2 mass fraction as a controlled state to manage several types of EGR engines - dual loop EGR diesel engines, low pressure loop /dedicated EGR (D-EGR) gasoline engines as well as dual fuel engines. Several suppliers are currently developing intake O2 sensors but they typically suffer from limited accuracy, response time and reliability. Also, addition of a new sensor implies increased production costs.
Technical Paper

Achieving Fast Catalyst Light-Off from a Heavy-Duty Stoichiometric Natural Gas Engine Capable of 0.02 g/bhp-hr NOX Emissions

2018-04-03
2018-01-1136
Recently conducted work has been funded by the California Air Resources Board (CARB) to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions for heavy-duty on-road engines. In addition to NOX emissions, greenhouse gas (GHG), CO2 and methane emissions regulations from heavy-duty engines are also becoming more stringent. To achieve low cold-start NOX and methane emissions, the exhaust aftertreatment must be brought up to temperature quickly while keeping proper air-fuel ratio control; however, a balance between catalyst light-off and fuel penalty must be addressed to meet future CO2 emissions regulations. This paper details the work executed to improve catalyst light-off for a natural gas engine with a close-coupled and an underfloor three-way-catalyst while meeting an FTP NOX emission target of 0.02 g/bhp-hr and minimizing any fuel penalty.
X