Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Implementing Ordinary Differential Equation Solvers in Rust Programming Language for Modeling Vehicle Powertrain Systems

2024-04-09
2024-01-2148
Efficient and accurate ordinary differential equation (ODE) solvers are necessary for powertrain and vehicle dynamics modeling. However, current commercial ODE solvers can be financially prohibitive, leading to a need for accessible, effective, open-source ODE solvers designed for powertrain modeling. Rust is a compiled programming language that has the potential to be used for fast and easy-to-use powertrain models, given its exceptional computational performance, robust package ecosystem, and short time required for modelers to become proficient. However, of the three commonly used (>3,000 downloads) packages in Rust with ODE solver capabilities, only one has more than four numerical methods implemented, and none are designed specifically for modeling physical systems. Therefore, the goal of the Differential Equation System Solver (DESS) was to implement accurate ODE solvers in Rust designed for the component-based problems often seen in powertrain modeling.
Technical Paper

Diesel Oxidation Catalyst Performance with Biodiesel Formulations

2024-04-09
2024-01-2711
Biodiesel (i.e., mono-alkyl esters of long chain fatty acids derived from vegetable oils and animal fats) is a renewable diesel fuel providing life-cycle greenhouse gas emission reductions relative to petroleum-derived diesel. With the expectation that there would be widespread use of biodiesel as a substitute for ultra-low sulfur diesel (ULSD), there have been many studies looking into the effects of biodiesel on engine and aftertreatment, particularly its compatibility to the current aftertreatment technologies. The objective of this study was to generate experimental data to measure the effectiveness of a current technology diesel oxidation catalysts (DOC) to oxidize soy-based biodiesel at various blend levels with ULSD. Biodiesel blends from 0 to 100% were evaluated on an engine using a conventional DOC.
Technical Paper

A Multi-Dimensional Benefit Assessment of Automated Mobility Platforms (AMP) for Large Facilities: Mobility, Energy, Equity, and Facility Management & Design

2023-09-05
2023-01-1512
The goal of the automated mobility platforms (AMPs) initiative is to raise the bar of service regarding equity and sustainability for public mobility systems that are crucial to large facilities, and doing so using electrified, energy efficient technology. Using airports as an example, the rapid growth in air travel demand has led to facility expansions and congested terminals, which directly impacts equity (e.g., increased challenges for Passengers with Reduced Mobility [PRMs]) and sustainability—both of which are important metrics often overlooked during the engineering design process.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part I: Accelerated Ash Loading and DPF Performance Evaluation

2023-04-11
2023-01-0297
The project objective was to generate experimental data to evaluate the impact of metals doped B20 on DPF ash loading and performance compared to that of conventional petrodiesel. Accelerated ash loading was conducted on two DPFs – one exposed to regular diesel fuel and the other to B20 containing metal dopants equivalent to 4 ppm B100 total metals (currently total metals are limited to 10 ppm in ASTM D6751, the standard for B100). Periodic performance evaluations were conducted on the DPFs at 10 g/L ash loading intervals. After the evaluations at 30 g/L, the DPF was cleaned with a commercial DPF cleaning machine and another round of DPF evaluations were conducted. A comparison of the effect of ash loading with the two fuels and DPF cleaning is presented. The metals doped B20 fuel resulted in ash that was similar to that deposited when exposed to ULSD (lube oil ash) and exhibited similar ash cleaning removal efficiency.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

Assessing the National Off-Cycle Benefits of 2-Layer HVAC Technology Using Dynamometer Testing and a National Simulation Framework

2023-04-11
2023-01-0942
Some CO2-reducing technologies have real-world benefits not captured by regulatory testing methods. This paper documents a two-layer heating, ventilation, and air-conditioning (HVAC) system that facilitates faster engine warmup through strategic increased air recirculation. The performance of this technology was assessed on a 2020 Hyundai Sonata. Empirical performance of the technology was obtained through dynamometer tests at Argonne National Laboratory. Performance of the vehicle across multiple cycles and cell ambient temperatures with the two-layer technology active and inactive indicated fuel consumption reduction in nearly all cases. A thermally sensitive powertrain model, the National Renewable Energy Laboratory’s FASTSim Hot, was calibrated and validated against vehicle testing data. The developed model included the engine, cabin, and HVAC system controls.
Technical Paper

Vehicle Powertrain Simulation Accuracy for Various Drive Cycle Frequencies and Upsampling Techniques

2023-04-11
2023-01-0345
As connected and automated vehicle technologies emerge and proliferate, lower frequency vehicle trajectory data is becoming more widely available. In some cases, entire fleets are streaming position, speed, and telemetry at sample rates of less than 10 seconds. This presents opportunities to apply powertrain simulators such as the National Renewable Energy Laboratory’s Future Automotive Systems Technology Simulator to model how advanced powertrain technologies would perform in the real world. However, connected vehicle data tends to be available at lower temporal frequencies than the 1-10 Hz trajectories that have typically been used for powertrain simulation. Higher frequency data, typically used for simulation, is costly to collect and store and therefore is often limited in density and geography. This paper explores the suitability of lower frequency, high availability, connected vehicle data for detailed powertrain simulation.
Technical Paper

High-Fidelity Heavy-Duty Vehicle Modeling Using Sparse Telematics Data

2022-03-29
2022-01-0527
Heavy-duty commercial vehicles consume a significant amount of energy due to their large size and mass, directly leading to vehicle operators prioritizing energy efficiency to reduce operational costs and comply with environmental regulations. One tool that can be used for the evaluation of energy efficiency in heavy-duty vehicles is the evaluation of energy efficiency using vehicle modeling and simulation. Simulation provides a path for energy efficiency improvement by allowing rapid experimentation of different vehicle characteristics on fuel consumption without the need for costly physical prototyping. The research presented in this paper focuses on using real-world, sparsely sampled telematics data from a large fleet of heavy-duty vehicles to create high-fidelity models for simulation. Samples in the telematics dataset are collected sporadically, resulting in sparse data with an infrequent and irregular sampling rate.
Technical Paper

Impacts of Biofuel Blending on MCCI Ignition Delay with Review of Methods for Defining Cycle-by-Cycle Ignition Points from Noisy Cylinder Pressure Data

2021-04-06
2021-01-0497
Conventional diesel combustion, also known as Mixing-Controlled Compression Ignition (MCCI), is expected to be the primary power source for medium- and heavy-duty vehicles for decades to come. Displacing petroleum-based ultra-low-sulfur diesel (ULSD) as much as possible with low-net-carbon biofuels will become necessary to help mitigate effects on climate change. Neat biofuels may have difficulty meeting current diesel fuel standards but blends of 30% biofuel in ULSD show potential as ‘drop-in’ fuels. These blends must not make significant changes to the combustion phasing of the MCCI process if they are to be used interchangeably with neat ULSD. An important aspect of MCCI phasing is the ignition delay (ID), i.e. the time between the start of fuel injection and the initial premixed autoignition that initiates the MCCI process.
Technical Paper

Impact of Lateral Alignment for Cooling Airflow during Heavy-Truck Platooning

2021-04-06
2021-01-0231
A truck platooning system was tested using two heavy-duty tractor-trailer trucks on a closed test track to investigate the thermal control/heat rejection system sensitivity to intentional lateral offsets over a range of intervehicle spacings. Previous studies have shown the following vehicle can experience elevated temperatures and reduced airflow through the cooling package as a result of close-formation platooning. Four anemometers positioned across the grille of the following trucks as well as aligned and multiple offset positions are used to evaluate the sensitivity of the impact. Straight sections of the track are isolated for the most accurate airflow impact measurements and to be most representative of on-highway driving. An intentional lateral offset in truck platooning is considered as a controls approach to mitigate reduced cooling efficacy at close following scenarios where the highest platoon savings are achieved.
Technical Paper

Using Demanded Power and RDE Aggressiveness Metrics to Analyze the Impact of CACC Aggressiveness on Heavy Duty Platooning Power Consumption

2021-04-06
2021-01-0069
Presently, a main mobility sector objective is to reduce its impact on the global greenhouse gas emissions. While there are many techniques being explored, a promising approach to improve fuel economy is to reduce the required energy by using slipstream effects. This study analyzes the demanded engine power and mechanical energy used by heavy-duty trucks during platooning and non-platooning operation to determine the aerodynamic benefits of the slipstream. A series of platooning tests utilizing class 8 semi-trucks platooning via Cooperative Adaptive Cruise Control (CACC) are performed. Comparing the demanded engine power and mechanical energy used reveals the benefits of platooning on the aerodynamic drag while disregarding any potential negative side effects on the engine. However, energy savings were lower than expected in some cases.
Technical Paper

Fuel Property Effects of a Broad Range of Potential Biofuels on Mixing Control Compression Ignition Engine Performance and Emissions

2021-04-06
2021-01-0505
Conventional diesel engines will continue to hold a vital role in the heavy- and medium-duty markets for the transportation of goods along with many other uses. The ability to offset traditional diesel fuels with low-net-carbon biofuels could have a significant impact on reducing the carbon footprint of these vehicles. A prior study screened several hundred candidate biofuel blendstocks based on required diesel blendstock properties and identified 12 as the most promising. Eight representative biofuel blendstocks were blended at a 30% volumetric concentration with EPA certification ultra-low-sulfur diesel (ULSD) and were investigated for emissions and fuel efficiency performance. This study used a single cylinder engine (based on the Ford 6.7L engine) using Conventional Diesel Combustion (CDC), also known as Mixing Control Compression Ignition (MCCI). The density, cetane number, distillation curve and sooting tendency (using the yield sooting index method) of the fuels were measured.
Technical Paper

Real-world Evaluation of National Energy Efficiency Potential of Cold Storage Evaporator Technology in the Context of Engine Start-Stop Systems

2020-04-14
2020-01-1252
National concerns over energy consumption and emissions from the transportation sector have prompted regulatory agencies to implement aggressive fuel economy targets for light-duty vehicles through the U.S. National Highway Traffic Safety Administration/Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) program. Automotive manufacturers have responded by bringing competitive technologies to market that maximize efficiency while meeting or exceeding consumer performance and comfort expectations. In a collaborative effort among Toyota Motor Corporation, Argonne National Laboratory (ANL), and the National Renewable Energy Laboratory (NREL), the real-world savings of one such technology is evaluated. A commercially available Toyota Highlander equipped with two-phase cold storage technology was tested at ANL’s chassis dynamometer testing facility.
Technical Paper

Impact to Cooling Airflow from Truck Platooning

2020-04-14
2020-01-1298
We investigate tradeoffs between the airflow strategies related to engine cooling and the aerodynamic-enabled fuel savings created by platooning. By analyzing air temperatures, engine temperatures and cooling air flow at different platoon distances, we show the thermal impact to the engine from truck platooning. Previously, we collected wind and thermal data for numerous heavy-duty truck platoon configurations (gaps ranging from 4 to 87 meters) and reported the significant fuel savings enabled by these configurations. The fuel consumption for all trucks in the platoon were measured using the SAE J1321 gravimetric procedure as well as calibrated J1939 instantaneous fuel rate while travelling at 65 mph and loaded to a gross weight of 65,000 lb.
Technical Paper

Leveraging Real-World Driving Data for Design and Impact Evaluation of Energy Efficient Control Strategies

2020-04-14
2020-01-0585
Modeling and simulation are crucial in the development of advanced energy efficient control strategies. Utilizing real-world driving data as the underlying basis for control design and simulation lends veracity to projected real-world energy savings. Standardized drive cycles are limited in their utility for evaluating advanced driving strategies that utilize connectivity and on-vehicle sensing, primarily because they are typically intended for evaluating emissions and fuel economy under controlled conditions. Real-world driving data, because of its scale, is a useful representation of various road types, driving styles, and driving environments. The scale of real-world data also presents challenges in effectively using it in simulations. A fast and efficient simulation methodology is necessary to handle the large number of simulations performed for design analysis and impact evaluation of control strategies.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Journal Article

RouteE: A Vehicle Energy Consumption Prediction Engine

2020-04-14
2020-01-0939
The emergence of connected and automated vehicles and smart cities technologies create the opportunity for new mobility modes and routing decision tools, among many others. To achieve maximum mobility and minimum energy consumption, it is critical to understand the energy cost of decisions and optimize accordingly. The Route Energy prediction model (RouteE) enables accurate estimation of energy consumption for a variety of vehicle types over trips or sub-trips where detailed drive cycle data are unavailable. Applications include vehicle route selection, energy accounting and optimization in transportation simulation, and corridor energy analyses, among others. The software is a Python package that includes a variety of pre-trained models from the National Renewable Energy Laboratory (NREL). However, RouteE also enables users to train custom models using their own data sets, making it a robust and valuable tool for both fast calculations and rigorous, data-rich research efforts.
Journal Article

Development and Demonstration of a Class 6 Range-Extended Electric Vehicle for Commercial Pickup and Delivery Operation

2020-04-14
2020-01-0848
Range-extended hybrids are an attractive option for medium- and heavy-duty commercial vehicle fleets because they offer the efficiency of an electrified powertrain with the driving range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture. Under a U.S. Department of Energy (DOE)-funded project for Medium- and Heavy-Duty Vehicle Powertrain Electrification, Cummins has developed a plug-in hybrid electric Class 6 truck with a range-extending engine designed for pickup and delivery application.
Technical Paper

Fuel-Lubricant Interactions on the Propensity for Stochastic Pre-Ignition

2019-09-09
2019-24-0103
This work explores the impact of the interaction of lubricant and fuel properties on the propensity for stochastic pre-ignition (SPI). Findings are based on statistically significant changes in SPI tendency and magnitude, as determined by measurements of cylinder pressure. Specifically, lubricant detergents, lubricant volatility, fuel volatility, fuel chemical composition, fuel-wall impingement, and engine load were varied to study the physical and chemical effects of fuel-lubricant interactions on SPI tendency. The work illustrates that at low loads, with fuels susceptible to SPI events, lubricant detergent package effects on SPI were non-significant. However, with changes to fuel distillation, fuel-wall impingement, and most importantly engine load, lubricant detergent effects could be observed even at reduced loads This suggests that there is a thermal effect associated with the higher load operation.
Journal Article

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
X