Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Icing Test and Measurement Capabilities of the NRC’s Gas Turbine Laboratory

2019-06-10
2019-01-1943
The National Research Council’s Gas Turbine Laboratory provides industry leading icing facilities that allow manufacturers to develop, validate and certify new products for flight in adverse conditions. This paper shows how NRC measurement techniques are used across the facilities, and presents a literature-review of recently developed capabilities. The overview includes new details on some facilities, and future capabilities that are in development or planned for the near future. Methods developed at the NRC for characterizing inclement conditions are discussed and include the Isokinetic Probe, Particle Shadow Velocimetry, the Particle Detection Probe, and a size-binned real-time thermodynamic evaporation model.
Technical Paper

Simulation of Ice Particle Melting in the NRCC RATFac Mixed-Phase Icing Tunnel

2015-06-15
2015-01-2107
Ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the compressor, potentially causing performance loss, damage and/or flameout. Several studies of this ice crystal icing (ICI) phenomenon conducted in the RATFac (Research Altitude Test Facility) altitude chamber at the National Research Council of Canada (NRCC) have shown that liquid water is required for accretion. CFD-based tools for ICI must therefore be capable of predicting particle melting due to heat transfer from the air warmed by compression and possibly also due to impact with warm surfaces. This paper describes CFD simulations of particle melting and evaporation in the RATFac icing tunnel for the former mechanism, conducted using a Lagrangian particle tracking model combined with a stochastic random walk approach to simulate turbulent dispersion. Inter-phase coupling of heat and mass transfer is achieved with the particle source-in-cell method.
Technical Paper

Development and Application of an Impedance-Based Instrument for Measuring the Liquid Fraction and Thickness of Ice Crystal Accretions

2015-06-15
2015-01-2134
Ice crystals ingested by a jet engine at high altitude can partially melt and then accrete within the forward stages of the compressor, potentially causing performance loss, damage and/or flameout. Recent research into this ice crystal icing (ICI) phenomenon conducted at the National Research Council of Canada suggests that the liquid water content vliq of an accretion significantly affects the accretion's susceptibility to erosion by ice crystals, and therefore accretion growth. This paper describes the development and application of an instrument for measuring vliq, potentially providing a method for correlating erosion behavior (e.g. as ductile or brittle) and properties. The instrument measures the complex admittance Y* of a mixed-phase deposit bridging a pair of electrodes, which is modeled as a resistor and capacitor in parallel, and calculates the deposit's relative permittivity εr from the capacitance.
X