Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

An Experimental Investigation on the Effect of Diluent Addition on Flame Characteristics in a Single Cylinder Optical Diesel Engine

2015-09-06
2015-24-2438
The present work investigates the effect of low levels CO2 addition on the combustion characteristics inside a single cylinder optical engine operated under low load conditions. The effects of dilution levels (up to 7.5% mass flow rate CO2 addition), the number of pilot injections (single or double pilot injections) and injection pressure (25 or 40 MPa), are evaluated towards the direction of achieving a partially premixed combustion (PPC) operation mode. The findings are discussed based on optical measurements and via pressure trace and apparent rate of heat release analyses in a Ricardo Hydra optical light duty diesel engine. The engine was operated under low IMEP levels of the order of 1.6 bar at 1200 rpm and with a CO2 diluent-enhanced atmosphere resembling an environment of simulated low exhaust gas recirculation (EGR) rates. Flame propagation is captured by means of high speed imaging and OH, CH and C2 line-of-sight chemiluminescence respectively.
Technical Paper

Production of Biobased Lubricant Basestocks with Improved Performance

2012-09-10
2012-01-1620
The ability of a catalyst to enhance the performance of synthesized biobased lubricant basestock was investigated in this study. Pomace olive oil, cottonseed oil, used frying oil and methyl oleate were utilized as starting materials for the production of the biobased lubricants and a two stages transesterification methodology was followed. Initially the oils were converted to their corresponding fatty acid methyl esters via methanolysis. The resulting methylesters were subsequently transesterified with TMP producing the desired oleochemical ester. These syntheses were carried out in the presence of either sodium methoxide or Ca/TEA alkoxide as catalysts. Following the purification phase, the synthesized esters were evaluated as potential biolubricants regarding their physicochemical properties such as viscosity index, pour point and acid value.
Technical Paper

Determination of Physicochemical Properties of Fatty Acid Ethyl Esters (FAEE) - Diesel Fuel Blends

2009-06-15
2009-01-1788
In this study, the transesterification process of 4 different vegetable oils (sunflower, rapeseed, olive oil and used frying oil) took place utilizing ethanol, in order to characterize the ethyl esters and their blends with diesel fuel obtained as fuels for internal combustion engines. All ethyl esters were synthesized using calcium ethoxide as a heterogeneous solid base catalyst. The ester preparation involved a two-step transesterification reaction, followed by purification. The effects of the mass ratio of catalyst to oil, the molar ratio of ethanol to oil, and the reaction temperature were studied on conversion of sunflower oil to optimize the reaction conditions in both stages. The rest of the vegetable oils were converted to ethyl esters under optimum reaction parameters. The optimal conditions for first stage transesterification were an ethanol/oil molar ratio of 12:1, catalyst amount (3.5%), and 80 °C temperature, whereas the maximum yield of ethyl esters reached 80.5%.
Journal Article

Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional, Multi-Zone Combustion Model

2009-04-20
2009-01-0931
In this work, a quasi-dimensional, multi-zone combustion model is analytically presented, for the prediction of performance and nitric oxide (NO) emissions of a homogeneous charge spark ignition (SI) engine, fueled with biogas-H2 blends of variable composition. The combustion model is incorporated into a closed cycle simulation code, which is also fully described. Combustion is modeled on the basis of turbulent entrainment theory and flame stretch concepts. In this context, the entrainment speed, by which unburned gas enters the flame region, is simulated by the turbulent burning velocity of a flamelet model. A flame stretch submodel is also included, in order to assess the flame response on the combined effects of curvature, turbulent strain and nonunity Lewis number mixture. As far as the burned gas is concerned, this is treated using a multi-zone thermodynamic formulation, to account for the spatial distribution of temperature and NO concentration inside the burned volume.
Technical Paper

Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine under Transient Operating Conditions

2009-04-20
2009-01-1122
In this paper, the results are presented from the analysis of the second stage of an experimental investigation with the aim to provide insight to the cyclic, instantaneous heat transfer phenomena occurring in both the cylinder head and exhaust manifold wall surfaces of a direct injection (DI), air-cooled diesel engine. Results from the first stage of the investigation concerning steady-state engine operation have already been presented by the authors in this series. In this second stage, the mechanism of cyclic heat transfer was investigated during engine transient events, viz. after a sudden change in engine speed and/or load, both for the combustion chamber and exhaust manifold surfaces. The modified experimental installation allowed both long- and short-term signal types to be recorded on a common time reference base during the transient event.
Journal Article

Experimental Assessment of Instantaneous Heat Transfer in the Combustion Chamber and Exhaust Manifold Walls of Air-Cooled Direct Injection Diesel Engine

2008-04-14
2008-01-1326
An experimental analysis is carried out to investigate several heat transfer characteristics during the engine cycle, in the combustion chamber and exhaust manifold walls of a direct injection (DI), air-cooled, diesel engine. For this purpose, a novel experimental installation has been developed, which separates the engine transient temperature signals into two groups, namely the long-and the short- term response ones, processing the respective signals in two independent data acquisition systems. Furthermore, a new pre-amplification unit for fast response thermocouples, appropriate heat flux sensors and an innovative, object-oriented, control code for fast data acquisition have been designed and applied. Experimentally obtained cylinder pressure diagrams together with semi-empirical equations for instantaneous heat transfer were used as basis for the calculation of overall heat transfer coefficient.
Technical Paper

Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines

2007-04-16
2007-01-0120
Despite the improvement in HD Diesel engine out emissions future emission legislation requires significant reduction of both NOx and particulate matter. To accomplish this task various solutions exist involving both internal and external measures. As widely recognized, it will be possibly required to employ both types of measures to meet future emission limits. Towards this direction, it is necessary to reduce NOx further using internal measures. Several solutions exist in that area, but the most feasible ones according to the present status of technical knowledge are EGR, water injection or fuel/water emulsions. These technologies aim to the reduction of both the gas temperature and oxygen concentration inside the combustion chamber that strongly affect NOx formation. However, there remain open points mainly concerning the effectiveness of water addition techniques and penalties related to bsfc and soot emissions.
Technical Paper

Description of in-Cylinder Combustion Processes in HCCI Engines Using a Multi-Zone Model

2005-04-11
2005-01-0171
In the present work, a multi-zone model is presented for the simulation of HCCI engines. This model is an improvement of a previous one developed by the authors. The present model describes the combustion, heat and mass transfer processes for the closed part of the engine cycle, i.e. compression, combustion and expansion. The zones occupy geometrical positions within the engine cylinder and exchange heat and mass throughout the compression and expansion strokes, based on their spatial configuration. Heat exchange is considered between zones and to the cylinder wall. A phenomenological model has been developed to describe mass exchange between zones and the flow of a portion of the in-cylinder mixture in and out of the crevice region. The crevice flow is a new feature and is included in the present model since the crevice regions are considered to contribute to unburned HC emissions. Another new feature is the incorporation of chemical kinetics, based on combustion chemistry reactions.
Technical Paper

Experimental Heat Release Rate Analysis in Both Chambers of an Indirect Injection Turbocharged Diesel Engine at Various Load and Speed Conditions

2005-04-11
2005-01-0926
A heat release analysis of experimental pressure diagrams, appropriate for indirect injection (divided chamber) diesel engines, is developed and used to obtain heat release rate profiles during the combustion process in each combustion chamber. Attention is paid to the correct processing of the data, due to the inherent complexity of the mass interchange between the two combustion chambers. The analysis concerns a turbocharged, indirect injection diesel engine, having a very small pre-chamber and a very narrow connecting passageway, operated at various load and speed conditions, located at the authors' laboratory. An extended experimental work, at steady-state conditions, is conducted on a specially developed test bed configuration of this engine, which is connected to a high-speed data acquisition and processing system.
Technical Paper

Modeling the Effects of EGR on a Heavy Duty DI Diesel Engine Using a new Quasi-Dimensional Combustion Model

2005-04-11
2005-01-1125
The model has already been applied on an old technology, naturally aspirated HSDI Diesel engine and on a heavy-duty turbocharged DI one equipped with a high pressure PLN fuel injection system, and the results were satisfying as far as performance and pollutant emissions (Soot and NO) are concerned. Taking into account that the main scope of engine simulation models is to assist engineers and researchers to understand the complex mechanisms involved in diesel engine combustion and pollutants formation and that through the continues engine development, new techniques are implemented, it is obvious that engine simulation models must always be enhanced with new features in order to be kept up-to-date. In this study the model has been modified to take into account the effect of EGR, since the latter one is a measure that will be used more extensively in the future to control NO emissions from turbocharged HDDI Diesel engines.
Technical Paper

Some Considerations on the Estimation of the Heat Release of DI Diesel Engines Using Modelling Techniques

2004-03-08
2004-01-1405
Simulation models are widely used from research engineers to investigate the combustion mechanism of DI diesel engines. These models can be used, as tools to either comprehend information provided by experimental data or to perform predictions and assist the development process. As widely recognized a valuable source of information for engine performance and emissions studies is the cylinder pressure trace. It can provide after processing information concerning the combustion rate of fuel injected inside the combustion chamber. Often it is also used to calibrate simulation models or even to derive correlations to represent the combustion rate of fuel inside the combustion chamber. The present research team has during the development process of a simulation model for the description of DI diesel engine performance and emissions realized that there exists a serious problem.
Technical Paper

The Effect of EGR on the Performance and Pollutant Emissions of Heavy Duty Diesel Engines Using Constant and Variable AFR

2001-03-05
2001-01-0198
Pollutant emissions and specifically NO and soot are one of the most important problems that engineers have to face when developing heavy duty DI diesel engines. Two main strategies exist as options for their control, reduction inside the engine cylinder using advanced combustion and fuel injection technologies and use of after-treatment systems. In the present work it is examined the use of EGR to control the formation of NO inside the cylinder of an engine with extremely high peak pressure. The work is applied on a single cylinder truck test engine developed under a project funded by the European Community focusing on the improvement of heavy duty DI diesel engine efficiency using increased injection timing. Use is made of a simulation model to predict the effect of more advanced injection timing on engine performance and emissions. The model has been modified to include the effect of EGR used to c ontrol the formation of NO which is considerably increased at high injection timings.
Technical Paper

Using Advanced Injection Timing and EGR to Improve DI Diesel Engine Efficiency at Acceptable NO and Soot Levels

2001-03-05
2001-01-0199
The direct injection diesel engine is one of the most efficient thermal engines known to man. For this reason DI diesel engines are widely used for heavy-duty applications and especially for the propulsion of trucks. Even though the efficiency of these engines is currently at a high level there still exist possibilities for further improvement. One way to accomplish this is by increasing the injection timing which usually improves, depending on the operating conditions, the indicated efficiency of the engine. On the other hand advanced injection timing has a negative effect on peak pressure causing a serious increase of its value, a negative effect on NO emissions which are also seriously increased and a positive effect on Soot emissions which are reduced. In the present work a theoretical and experimental investigation is presented to determine the effect of more advanced injection timing on engine performance and pollutant emissions.
Technical Paper

Experimental Investigation of the Effect of Fuel Composition on the Formation of Pollutants in Direct Injection Diesel Engines

1999-03-01
1999-01-0189
A great deal of research is taking place at the present time in the field of diesel engines, especially regarding the emission of gaseous pollutants and soot. This research is essential for engine manufacturers since it is difficult for diesel engines to meet current standards regarding soot and nitric oxide emissions. The problem will become even more severe when the new legislation will be applicable requiring a 50% reduction of existing levels. Many manufacturers and researchers feel that engines will be difficult to meet this criterion without the use of other techniques such as gas aftertreatment or newly developed fuels (low sulfur content, etc.). The aim of this research is to examine the effect of fuel composition and physical properties on the mechanism of combustion and pollutants formation.
X