Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermodynamic and Tribological Analysis of an Innovative Mechanism for Reciprocating Machines

2023-08-28
2023-24-0016
Research and development studies regarding the internal combustion engines are, now more than ever, crucial in order to prevent a premature disposal for this application. An innovative technology is analyzed in this paper. The traditional slider-crank mechanism is replaced by a system of two ring-like elements crafted in such a way to transform the rotating motion of one element in the reciprocating motion of the other. This leads both to a less complex engine architecture and to the possibility to obtain a wide range of piston laws by changing the profile of the two cams. The relative motion of the cams is the peculiar feature of this engine and, due to this, alongside with the thermodynamic analysis, also the tribological aspects are investigated. 3D-CFD simulations are performed for several piston laws at different engine speeds to evaluate the cylinder pressure trace to be used as input data for the development of the tribological model.
Technical Paper

Recurrent and Time-Delay Neural Networks as Virtual Sensors for NOx Emissions in Marine Diesel Powertrains

2021-03-25
2021-01-5042
Neural networks (NN) for marine engines, using raw measurement data from laboratory measurements, are developed and verified. These models can be utilized as virtual sensors of engine-out NOx emissions and lambda (λ). Investigations for the optimal NN configuration targeting models were carried so they can capture the dynamic behavior of a marine diesel engine, can generalize within the training range, and have the minimum complexity due to execution performance and portability reasons. Two configurations of NNs are investigated, the recurrent (RNN) and the time-delay neural network (TDNN). The resulting NN models are deployed on a prototype engine control unit (ECU) platform and are validated in real time for operating points and patterns that are not included in the training dataset. The real-time validation shows that the predicted quantities remain consistent in most operating areas and the dynamic behavior of the system is captured and reproduced accurately.
Technical Paper

Particulate Contamination in Biodiesel Fuel under Long-Term Storage

2020-09-15
2020-01-2143
Many incidents associated with filter plugging have extensively been reported in microbially contaminated diesel and biodiesel fuel systems, especially under long term storage conditions. In this study a quantitative assessment of the undesirable insoluble solids produced in contaminated biodiesel fuels was carried out in order to evaluate their evolution rate during biodeterioration. For this purpose, a series of contaminated biodiesel fuel microcosms were prepared and stored for six months under stable conditions. The quantity of the particulate contaminants was monitored during storage by a multiple filtration technique which was followed at the end by a comparison with the active bioburden per ATP bioluminescence protocol. Additionally, identical microcosms were treated with a commercially available biocide in order to examine the latter’s activity both on solids formation and the microbial proliferation.
Technical Paper

Lubricity of Diesel Fuel Hydrocarbons and Surrogate Fuels

2017-10-08
2017-01-2292
The aim of this study is to investigate the lubricity of hydrocarbons that constitute components of petroleum diesel fuel. A number of typical hydrocarbon compounds were selected as representative of the group types of alkanes (paraffins), cycloalkanes (naphthenes) and aromatics, similar to those that are present in diesel fuel. The lubricity of these substances was examined in a High Frequency Reciprocating Rig (HFRR) apparatus according to the ISO 12156-1 standard method. Thereafter, a series of diesel surrogate fuel were prepared from the above substances based on literature data for diesel fuel composition and on the previously obtained results. These model fuels were assessed regarding their lubricating performance in order to evaluate how each individual component can affect the lubricity of the final fuel.
Technical Paper

Evaluation of the Stability and Ignition Quality of Diesel-Biodiesel-Butanol Blends

2017-10-08
2017-01-2320
FAME is the most common renewable component of conventional automotive diesel. Despite the advantages, biodiesel is more susceptible to oxidative deterioration and due to its chemical composition as well as its higher affinity to water, is considered to be a favorable substrate for microorganisms. On the other hand, apart from biodiesel, alcohols are considered to be promising substitutes to conventional diesel fuel because they can offer higher oxygen concentration leading to better combustion characteristics and lower exhaust emissions. More specifically, n-butanol is a renewable alcohol demonstrating better blending capabilities and properties when it is added to diesel fuel, as its composition is closer to conventional fuel, when compared ethanol to for example. Taking into consideration the alleged disinfectant properties of alcohols, it would be interesting to examine also the microbial stability of blends containing n-butanol in various concentrations.
Journal Article

Off-Road Tire-Terrain Interaction: An Analytical Solution

2016-09-27
2016-01-8029
A novel semi-analytical solution has been developed for the calculation of the static and dynamic response of an off road tire interacting with a deformable terrain, which utilizes soil parameters independent of the size of the contact patch (size-independent). The models involved in the solution presented, can be categorized in rigid and/or pneumatic tires, with or without tread pattern. After a concise literature review of related methods, a detailed presentation of the semi-analytical solution is presented, along with assumptions and limitations. A flowchart is provided, showing the main steps of the numerical implementation, and various test cases have been examined, characterized in terms of vertical load, tire dimensions, soil properties, deformability of the tire, and tread pattern. It has been found that the proposed model can qualitatively capture the response of a rolling wheel on deformable terrain.
Technical Paper

Exhaust Phases in a DI Diesel Engine Based on Instantaneous Cyclic Heat Transfer Experimental Data

2013-04-08
2013-01-1646
In the present paper a new method is proposed for the analysis of the two main phases of the engine exhaust stroke blowdown and displacement. The method is based on the processing of fast-response experimental temperatures obtained from the exhaust manifold wall during the engine cycle. A novel experimental installation has been developed, which separates the engine transient temperature signals into two groups, namely the long- and the short- term response ones. This has been achieved by processing the respective signals acquired from two independent data acquisition systems. Furthermore, a new pre-amplification unit for fast response thermocouples, appropriate heat flux sensors and an innovative, object-oriented, control code for fast data acquisition have been designed and applied. For the experimental procedure a direct injection (DI), air-cooled diesel engine is used.
Technical Paper

Identification and Correction of the Error Induced by the Sampling Method Used to Monitor Cylinder Pressure of Reciprocating Internal Combustion Engines

2012-04-16
2012-01-1155
Cylinder pressure measurements are common practice for internal combustion reciprocating engines during field or lab applications for the purpose of combustion analysis, condition monitoring etc. The most accurate method is to measure cylinder pressure using a crank angle encoder as a trigger source to guarantee cylinder pressure measurement at predefined crank angle events. This solution, even though favorable, presents a number of practical difficulties for field applications and increased cost, for this reason its use is practically restricted to lab applications. Therefore a commonly used approach for ad hoc measurements is to digitize samples at fixed time intervals and then convert time into crank angle assuming a constant rotational speed. But if engine rotational speed is not constant within the engine cycle this may result to incorrect cylinder pressure CA referencing.
Technical Paper

Evaluation of a New Diagnostic Technique to Detect and Account for Load Variation during Cylinder Pressure Measurement of Large-Scale Four-Stroke Diesel Engines

2012-04-16
2012-01-1342
High efficiency, power concentration and reliability are the main requirements from Diesel Engines that are used in most technical applications. This becomes more important with the increase of engine size. For this reason the aforementioned characteristics are of significant priority for both marine and power generation applications. To guarantee efficient engine operation and maximum power output, both research and commercial communities are increasingly interested in methods used for supervision, fault-detection and fault diagnosis of large scale Diesel Engines. Most of these methods make use of the measured cylinder pressure to estimate various critical operating parameters such as, brake power, fuel consumption, compression status, etc. The results obtained from the application of any diagnostic technique, used to assess the current engine operating condition and identify the real cause of the malfunction or fault, depend strongly on the quality of these data.
Journal Article

An Experimental Study on the Impact of Biodiesel Origin and Type on the Exhaust Emissions from a Euro 4 Pick-up Truck

2010-10-25
2010-01-2273
This study investigates the impact of mid-high biodiesel blends on the criteria and PAH emissions from a modern pick-up diesel vehicle. The vehicle was a Euro 4 (category N1, subclass III) compliant common-rail light-duty goods pick-up truck fitted with a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer equipped with CVS, following the European regulations. All measurements were conducted over the certification New European Driving Cycle (NEDC) and the real traffic-based Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based biodiesel, a palm-based biodiesel, and an oxidized biodiesel obtained from used frying oils were blended with a typical automotive ultra-low-sulfur diesel at proportions of 30, 50 and 80% by volume. The experimental results revealed that CO₂ emissions and fuel consumption exhibited an increase with biodiesel over all driving conditions.
Journal Article

Regulated and Unregulated Emissions of a Euro 4 SUV Operated with Diesel and Soy-based Biodiesel Blends

2009-11-02
2009-01-2690
In this study, regulated, unregulated exhaust emissions and fuel consumption with ultra low sulphur diesel and soy-based biodiesel blends at proportions of 10 and 30% v/v have been investigated. A Euro 4 compliant SUV, equipped with a 2.2 litre common-rail diesel engine and an oxidation catalyst was tested on a chassis dynamometer with constant volume sampling (CVS) technique. Emission and fuel consumption measurements were performed over the New European Driving Cycle (NEDC) and the non-legislated Artemis driving cycles which simulate urban, rural, and highway driving conditions in Europe. The regulated pollutants were characterized by determined NOx, PM, CO, and HC. CO2 was also quantified in the exhaust. Overall, 16 PAHs, 4 nitro-PAHs, 6 oxy-PAHs, 13 carbonyl compounds and particulate alkanes ranged from C13 to C35 were determined in the exhaust.
Technical Paper

The Effect of Biodiesel on PAHs, Nitro-PAHs and Oxy-PAHs Emissions from a Light Vehicle Operated Over the European and the Artemis Driving Cycles

2009-06-15
2009-01-1895
This study examines the effects of neat soy-based biodiesel (B100) and its 50% v/v blend (B50) with low sulphur automotive diesel on vehicle PAH emissions. The measurements were conducted on a chassis dynamometer with constant volume sampling (CVS) according to the European regulated technique. The vehicle was a Euro 2 compliant diesel passenger car, equipped with a 1.9 litre common-rail turbocharged direct injection engine and an oxidation catalyst. Emissions of PAHs, nitro-PAHs and oxy-PAHs were measured over the urban phase (UDC) and the extra-urban phase (EUDC) of the type approval cycle (NEDC). In addition, for evaluating realistic driving performance the non-legislated Artemis driving cycles (Urban, Road and Motorway) were used. Overall, 12 PAHs, 4 nitro-PAHs, and 6 oxy-PAHs were determined. The results indicated that PAH emissions exhibited a reduction with biodiesel during all driving modes.
Journal Article

Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional, Multi-Zone Combustion Model

2009-04-20
2009-01-0931
In this work, a quasi-dimensional, multi-zone combustion model is analytically presented, for the prediction of performance and nitric oxide (NO) emissions of a homogeneous charge spark ignition (SI) engine, fueled with biogas-H2 blends of variable composition. The combustion model is incorporated into a closed cycle simulation code, which is also fully described. Combustion is modeled on the basis of turbulent entrainment theory and flame stretch concepts. In this context, the entrainment speed, by which unburned gas enters the flame region, is simulated by the turbulent burning velocity of a flamelet model. A flame stretch submodel is also included, in order to assess the flame response on the combined effects of curvature, turbulent strain and nonunity Lewis number mixture. As far as the burned gas is concerned, this is treated using a multi-zone thermodynamic formulation, to account for the spatial distribution of temperature and NO concentration inside the burned volume.
Journal Article

Possibility to Determine Diesel Engine Condition and Tuning from the Application of a Diagnostic Technique at a Single Operating Point

2009-04-20
2009-01-0681
A difficulty which exists when applying diagnostic techniques on large-scale diesel engines operating on the field, is that usually it is not possible to obtain measurement data at a wide engine operating range due to a number of constraints. In the present work is investigated the possibility to overcome this practical difficulty originating from the test procedure for engines operating on the field (i.e. marine or stationary applications). The main objective is to examine if a diagnosis procedure provides similar results when applied at various engine operating conditions. For this purpose an existing diagnostic technique, developed by the authors, is applied at different operating conditions on a large-scale two-stroke diesel engine used for power generation in a Greek island.
Technical Paper

Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine under Transient Operating Conditions

2009-04-20
2009-01-1122
In this paper, the results are presented from the analysis of the second stage of an experimental investigation with the aim to provide insight to the cyclic, instantaneous heat transfer phenomena occurring in both the cylinder head and exhaust manifold wall surfaces of a direct injection (DI), air-cooled diesel engine. Results from the first stage of the investigation concerning steady-state engine operation have already been presented by the authors in this series. In this second stage, the mechanism of cyclic heat transfer was investigated during engine transient events, viz. after a sudden change in engine speed and/or load, both for the combustion chamber and exhaust manifold surfaces. The modified experimental installation allowed both long- and short-term signal types to be recorded on a common time reference base during the transient event.
Journal Article

Effect of Fuel Chemical Structure and Properties on Diesel Engine Performance and Pollutant Emissions: Review of the Results of Four European Research Programs

2008-04-14
2008-01-0838
During recent years, the deterioration of greenhouse phenomenon, in conjunction with the continuous increase of worldwide fleet of vehicles and crude oil prices, raised heightened concerns over both the improvement of vehicle mileage and the reduction of pollutant emissions. Diesel engines have the highest fuel economy and thus, highest CO2 reduction potential among all other thermal propulsion engines due to their superior thermal efficiency. However, particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines are comparatively higher than those emitted from modern gasoline engines. Therefore, reduction of diesel emitted pollutants and especially, PM and NOx without increase of specific fuel consumption or let alone improvement of diesel fuel economy is a difficult problem, which requires immediate and drastic actions to be taken.
Journal Article

Experimental Assessment of Instantaneous Heat Transfer in the Combustion Chamber and Exhaust Manifold Walls of Air-Cooled Direct Injection Diesel Engine

2008-04-14
2008-01-1326
An experimental analysis is carried out to investigate several heat transfer characteristics during the engine cycle, in the combustion chamber and exhaust manifold walls of a direct injection (DI), air-cooled, diesel engine. For this purpose, a novel experimental installation has been developed, which separates the engine transient temperature signals into two groups, namely the long-and the short- term response ones, processing the respective signals in two independent data acquisition systems. Furthermore, a new pre-amplification unit for fast response thermocouples, appropriate heat flux sensors and an innovative, object-oriented, control code for fast data acquisition have been designed and applied. Experimentally obtained cylinder pressure diagrams together with semi-empirical equations for instantaneous heat transfer were used as basis for the calculation of overall heat transfer coefficient.
Technical Paper

Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines

2007-04-16
2007-01-0120
Despite the improvement in HD Diesel engine out emissions future emission legislation requires significant reduction of both NOx and particulate matter. To accomplish this task various solutions exist involving both internal and external measures. As widely recognized, it will be possibly required to employ both types of measures to meet future emission limits. Towards this direction, it is necessary to reduce NOx further using internal measures. Several solutions exist in that area, but the most feasible ones according to the present status of technical knowledge are EGR, water injection or fuel/water emulsions. These technologies aim to the reduction of both the gas temperature and oxygen concentration inside the combustion chamber that strongly affect NOx formation. However, there remain open points mainly concerning the effectiveness of water addition techniques and penalties related to bsfc and soot emissions.
Technical Paper

Evaluation of Various Dynamic Issues During Transient Operation of Turbocharged Diesel Engine with Special Reference to Friction Development

2007-04-16
2007-01-0136
The modeling of transient turbocharged diesel engine operation appeared in the early seventies and continues to be in the focal point of research, due to the importance of transient response in the everyday operating conditions of engines. The majority of research has focused so far on issues concerning thermodynamic modeling, as these directly affect heat release predictions and consequently performance and pollutants emissions. On the other hand, issues concerning the dynamics of transient operation are often disregarded or over-simplified, possibly for the sake of speeding up program execution time. In the present work, an experimentally validated transient diesel engine simulation code is used to study and evaluate the importance of such dynamic issues. First of all, the development of various forces (piston, connecting rod, crank and main crankshaft bearings) is computed and illustrated in order to evaluate the importance of abrupt load increases on the bearings durability.
Technical Paper

Single Fuel Research Program Comparative Results of the Use of JP-8 Aviation Fuel versus Diesel Fuel on a Direct Injection and Indirect Injection Diesel Engine

2006-04-03
2006-01-1673
During the last years a great effort has been made by many NATO nations to move towards the use of one military fuel for all the land-based military aircraft, vehicles and equipment employed on the military arena. This idea is known to as the Single Fuel Concept (SFC). The fuel selected for the idea of SFC is the JP-8 (F-34) military aviation fuel which is based upon the civil jet fuel F-35 (Jet A-1) with the inclusion of military additives possessing anti-icing and lubricating properties. An extended experimental investigation has been conducted in the laboratory of Thermodynamic and Propulsion Systems at the Hellenic Air Force Academy. This investigation was conducted with the collaboration of the respective laboratories of National Technical University of Athens and Hellenic Naval Academy as well.
X