Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Influence of Engine Speed on Autoignition and Combustion Characteristics in a Supercharged HCCI Engine

2017-11-05
2017-32-0090
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. However, because HCCI engines lack a physical means of initiating ignition, it is difficult to control the ignition timing. Another issue of HCCI engines is that the combustion process causes the cylinder pressure to rise rapidly. The time scale is also important in HCCI combustion because ignition depends on the chemical reactions of the mixture. Therefore, we investigated the influence of the engine speed on autoignition and combustion characteristics in an HCCI engine. A four-stroke single-cylinder engine equipped with a mechanically driven supercharger was used in this study to examine HCCI combustion characteristics under different engine speeds and boost pressures.
Journal Article

Effect of Streamer Discharge Assist on Combustion in a Supercharged HCCI Engine

2016-11-08
2016-32-0013
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest in recent years as a clean, high-efficiency combustion system. However, it is difficult to control the ignition timing in HCCI engines because they lack a physical means of inducing ignition. Another issue of HCCI engines is their narrow operating range because of misfiring that occurs at low loads and abnormal combustion at high loads. As a possible solution to these issues, this study focused on the application of a streamer discharge in the form of non-equilibrium plasma as a technique for assisting HCCI combustion. Experiments were conducted with a four-stroke single-cylinder engine fitted with an ignition electrode in the combustion chamber. A streamer discharge was continuously generated in the cylinder during a 720-degree interval from the intake stroke to the exhaust stroke.
Technical Paper

An Analysis of Conditions Producing Two-Stage Main Combustion Heat Release in a Supercharged HCCI Engine using a Gaseous Fuel Blend

2015-09-01
2015-01-1785
In this study, a detailed analysis was made of supercharged HCCI combustion using a two-component fuel blend of dimethyl ether (DME), which has attracted interest as a potential alternative fuel, and methane. The quantity of fuel injected and boost pressure were varied to investigate the equivalence ratio and operating region conducive to optimal HCCI combustion. The results revealed that varying the boost pressure according to the engine load and applying a suitable equivalence ratio induced two-stage main combustion over a wide load range, making it possible to avoid excessively rapid combustion.
Technical Paper

A Spectroscopic Study of the Effects of Multicomponent Fuel Blends on Supercharged HCCI Combustion

2012-10-23
2012-32-0080
The growing severity of global environmental issues in recent years, including air pollution and the depletion of fossil fuels, has made it necessary for internal combustion engines to achieve higher efficiency and lower exhaust emission levels. Calls for reducing atmospheric emissions of carbon dioxide (CO₂) necessitate thoroughgoing measures to lower the levels of CO₂ originating in the combustion process of internal combustion engines and to facilitate operation on diverse energy sources. Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. These characteristics are obtainable because HCCI combustion can take place at ultra-lean conditions exceeding the limits of flame propagation.
Journal Article

A Study of Ignition Characteristics of an HCCI Engine Operating on a Two-component Fuel

2010-09-28
2010-32-0098
The Homogenous Charge Compression Ignition (HCCI) engine is positioned as a next-generation internal combustion engine and has been the focus of extensive research in recent years to develop a practical system. One reason is that this new combustion system achieves lower fuel consumption and simultaneous reductions of nitrogen oxide (NOx) and particulate matter (PM) emissions, which are major issues of internal combustion engines today. However, the characteristics of HCCI combustion can prevent suitable engine operation owing to the rapid combustion process that occurs accompanied by a steep pressure rise when the amount of fuel injected is increased to obtain higher power output. A major issue of HCCI is to control this rapid combustion so that the quantity of fuel injected can be increased for greater power. Controlling the ignition timing is also an issue because it is substantially influenced by the chemical reactions of the fuel.
Journal Article

Optical Measurement of Autoignition and Combustion Behavior in an HCCI Engine

2010-09-28
2010-32-0089
In this study, optical measurements were made of the combustion chamber gas during operation of a Homogeneous Charge Compression Ignition (HCCI) engine in order to obtain a better understanding of the ignition and combustion characteristics. The principal issues of HCCI engines are to control the ignition timing and to optimize the combustion state following ignition. Autoignition in HCCI engines is strongly influenced by the complex low-temperature oxidation reaction process, alternatively referred to as the cool flame reaction or negative temperature coefficient (NTC) region. Accordingly, a good understanding of this low-temperature oxidation reaction process is indispensable to ignition timing control. In the experiments, spectroscopic measurement methods were applied to investigate the reaction behavior in the process leading to autoignition.
Technical Paper

Measurement of Radical Behavior in Homogeneous Charge Compression Ignition Combustion Using Dimethyl Ether

2003-09-16
2003-32-0006
Attention has recently been focused on homogeneous charge compression ignition (HCCI) as an effective combustion process for resolving issues inherent to the nature of combustion. Dimethyl ether (DME; CH3OCH3) has attracted interest as a potential alternative fuel for compression ignition engines. We measured the HCCI process of DME in a test diesel engine by using a spectroscopic method. Simultaneous measurements were also done on exhaust emissions of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx). Based on the experimental data, this paper discusses the relationship between the equivalence ratio and the observed tendencies.
X