Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Improvement of HC-SCR Performance by Fuel Reforming Using a Low Temperature Oxidation

2021-04-06
2021-01-0591
A fuel reforming technology using a low temperature oxidation was developed to improve a NOx reduction performance of HC-SCR (Hydrocarbons Selective Catalytic Reduction) system, which does not require urea. The low-temperature oxidization of a diesel fuel in gas phase produces NOx reduction agents with high NOx reduction ability such as aldehydes and ketones. A pre-evaporation-premixing-type reformer was adopted in order to generate a uniform temperature field and a uniform fuel/air premixed gas, and to promote the low temperature oxidation efficiently. As a fundamental study, elementary reaction analysis for n-hexadecane/air premixtures was carried out to investigate the suitable reformer temperature and fuel/air equivalence ratio for generation of oxygenated hydrocarbons. It was found that the reforming efficiency was highest at the reforming temperature around 623 to 673K, and aldehydes and ketones were produced.
Journal Article

Stainless Steel Thermal Spray Coating of Cylinder Bores for VC-Turbo Engine

2021-04-06
2021-01-0343
Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced.
Technical Paper

In-cylinder flow design based on the representative scales of turbulence and premixed combustion

2019-12-19
2019-01-2210
Dilution combustion with exhaust gas recirculation (EGR) has been applied for the improvement of thermal efficiency. In order to stabilize the high diluted combustion, it is important to form an appropriate turbulence in the combustion cylinder. Turbulent intensity needs to be strengthened to increase the combustion speed, while too strong turbulence causes ignition instability. In this study, the factor of combustion instability under high diluted conditions was analyzed by using single cylinder engine test, optical engine test and 3D CFD simulation. Finally, methodology of in-cylinder flow design is attempted to build without any function by taking into account the representative scales of turbulence and premixed combustion.
Technical Paper

Research on a DPF Regeneration Burner System for Use when Engine is not in Operation

2019-12-19
2019-01-2237
An on board burner that enables DPF regeneration even when an engine is at standstill has been researched. By employing pre evaporative combustion with a wick burner, miniaturization of the burner system was successfully accomplished as well as stable ignition and combustion. Total heat necessary for DPF regeneration was reduced in comparison to the active DPF regeneration by means of engine control and an oxidation catalyst. Uneven temperature distribution in DPF and excessive temperature rise, which had been recognized as issues in the regeneration of a DPF while engine is at standstill, were solved by increase of combustion air amount and multi-step control of regeneration temperature and reliable regeneration was accomplished.
Technical Paper

New CO2 / Fuel Consumption Certification Cycles and Design Implications for Fuel Efficient Lubricants

2019-12-19
2019-01-2367
During this decade, the constant increase and globalization of passenger car sales has led countries to adopt a common language for the treatment of CO2 and other pollutant emissions. In this regard, the WLTC - World-wide harmonized Light duty Test Cycle - stands as the new global reference cycle for fuel consumption, CO2 and pollutant emissions across the globe. Regulations keep a constant pressure on CO2 emission reduction leading vehicle manufacturers and component suppliers to modify hardware to ensure compliance. Within this balance, lubricants remain worthwhile contributors to lowering CO2 emission and fuel consumption. Yet with WTLC, new additional lubricant designs are likely to be required to ensure optimized friction due to its new cycle operating conditions, associated powertrain hardware and worldwide product use.
Journal Article

Influence of Combustion Chamber Shape and In-Cylinder Density on Soot Formation in Diesel Combustion

2019-12-19
2019-01-2271
The change in the smoke emissions from a diesel engine with the shapes of the combustion chamber and the in-cylinder density was investigated with focuses on the mixing and the soot formation in a spray flame. First, the mixing of the fuel and air between the nozzle exit and the set-off length was used as an indicator for the formation of soot. Although this indicator can explain the influence of the density, it cannot explain the changes in the smoke emissions with a change in the shape of the combustion chamber. Next, by focusing on the soot distribution in a quasi-steady-state spray flame, the soot formed in the high-density condition of an optically accessible engine was investigated by applying two-color method. These results showed that the positional relationship between the maximum soot amount position and the flame impinging position can be a major influence on the smoke emissions.
Journal Article

A Study of Particulate Emission Formation Mechanism from Injector Tip in Direct-Injection Gasoline Engines

2019-12-19
2019-01-2244
The mechanism causing in-cylinder injector tip soot formation, which is the main source of particle number (PN) emissions under operating conditions after engine warm-up, was analyzed in this study. The results made clear a key parameter for reducing injector tip soot PN emissions. An evaluation of PN emissions for different amounts of injector tip wetting revealed that an injector with larger tip wetting forms higher PN emissions. The results also clarified that the amount of deposits does not have much impact on PN emissions. The key parameter for reducing injector tip soot is injector tip wetting that has a linear relationship with injector tip soot PN emissions.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Technical Paper

Failure Prediction for Robot Reducers by Combining Two Machine Learning Methods

2019-04-02
2019-01-0508
There are many production robots used at car manufacturing plants, and each of them is fitted with several reducers. A breakdown of one of these reducers may cause a huge loss due to the stoppage of all production lines. Therefore, condition-based maintenance is currently being used to predict failures by predetermined thresholds for average and standard deviations. However, this method can cause many false alarms or some false negatives. There are some ways of suppressing false alarms, such as detecting a change in the probability density function. However, when false alarms are suppressed using the probability density function in the operational range, some false negatives may occur, leading to a breakdown of a reducer and huge loss. A false negative is caused by overlooking an anomaly with slight changes and it is difficult to detect using only the probability density function.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Oxidative Deterioration Properties of FAME-Blended Diesel Fuel

2018-04-03
2018-01-0924
The correlation between newly approved EN 15751 and the internal diesel injector deposits (IDID) due to fuel oxidative deterioration has not been made clear. In the present research, the Rancimat method was slightly modified to research the relationship between fuel oxidative deterioration and the deterioration products generated from the fuel. After heating fuel at 120 to 150°C for a set period, insoluble deterioration products (IDID-like substances) were generated and their weights were measured. At the same time, the shifts of the conductivity in trap water were analyzed from a new perspective, and its relationship with the deterioration products was investigated. At 120°C and 130°C, conductivity rising rates after the inflection point (this set of data represents the rate of organic acid generation in the fuel, and we named “Oxidation rate”) exhibited a strong correlation with the quantity of deterioration products.
Technical Paper

Application of 980 MPa Grade Advanced High Strength Steel with High Formability

2018-04-03
2018-01-0625
There are strong demands for vehicle weight reductions so as to improve fuel economy. At the same time, it is also necessary to ensure crash safety. One effective measure for accomplishing such both requirements conflicting each other is to apply advanced high strength steel (AHSS) of 780 MPa grade or higher to the vehicle body. On the other hand, higher strength steels generally tend to display lower elongation causing formability deterioration. Nissan Motor Corporation have jointly developed with steel manufacturers a new 980 MPa grade AHSS with high formability with the aim of substituting it for the currently used 590 MPa grade high-tensile steel. Several application technologies have been developed through the verifications such as formability, resistance spot weldability, crashworthiness, and delayed fracture.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
Journal Article

Silicon Carbide Inverter for EV/HEV Application featuring a Low Thermal Resistance Module and a Noise Reduction Structure

2017-03-28
2017-01-1669
This paper presents the technologies incorporated in an electric vehicle (EV)/hybrid electric vehicle (HEV) inverter built with power semiconductors of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) instead of conventional silicon (Si) insulated gate bipolar transistors (IGBTs). A SiC inverter prototype of 2.9 L in size for driving an 80-kW motor was fabricated and evaluated on a motor test bench. The SiC inverter prototype attained average efficiency of 98.5% in the Worldwide harmonized Light-duty Test Cycle (WLTC) driving mode. The two main technologies achieved with this SiC inverter prototype are described. The first one is a new direct-cooled power module with a thick copper (Cu) heat spreader located under the semiconductors that improves thermal resistance by 34% compared with a conventional direct-cooled power module.
Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Technical Paper

A Study on the Effects of a Higher Compression Ratio in the Combustion Chamber on Diesel Engine Performance

2016-04-05
2016-01-0722
In order to improve the brake thermal efficiency of the engine, such as cooling and friction losses from the theoretical thermal efficiency, it is necessary to minimize various losses. However, it is also essential to consider improvements in theoretical thermal efficiency along with the reduction of the various losses. In an effort to improve the brake thermal efficiency of heavy-duty diesel engines used in commercial vehicles, this research focused on two important factors leading to the engine's theoretical thermal efficiency: the compression ratio and the specific heat ratio. Based on the results of theoretical thermodynamic cycle analyses for the effects of the above two factors, it was predicted that raising the compression ratio from a base engine specification of 17 to 26, and increasing the specific heat ratio would lead to a significant increase in theoretical thermal efficiency.
Technical Paper

Development of Fuel Economy Engine Oil for Heavy Duty Diesel Engine

2015-09-01
2015-01-2034
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan.
Technical Paper

Mechanism Analysis on LSPI Occurrence in Boosted S. I. Engines

2015-09-01
2015-01-1867
Mechanism of suddenly occurring behavior of low speed pre-ignition (LSPI) in boosted spark ignition (SI) engines was analyzed with various experimental methodologies. Endoscope-visualized 1st cycle of LSPI showed droplet-like luminous flame kernels as the origin of flame propagation before spark ignition. With the oil lubricated visualization engine, droplets flying were observed only after enough accumulation of fuel at piston crevice. Also, it was confirmed that subsequent cycles of LSPI occur only after enough operation time. These results indicated that local accumulation of liner adhered fuel and saturation of oil dilution can be a contributing factor to the sudden occurrence of LSPI.
Technical Paper

TEM Analysis of Soot Particles Sampled from Gasoline Direction Injection Engine Exhaust at Different Fuel Injection Timings

2015-09-01
2015-01-1872
For better understanding of in-cylinder soot formation processes and governing factors of the number of emitted soot particles of Gasoline Direct Injection (GDI) engines, Transmission Electron Microscope (TEM) analysis of morphology and nanostructure of the soot particles sampled in the exhaust should provide useful information. However, the number concentration of the soot particles emitted from GDI engines is relatively low, which was impeding reliable morphological analysis of the soot particles based on a sufficient number of sampled particles. Therefore, in the present study, a water-cooled thermophoretic sampler for simple and direct sampling of exhaust soot particles was developed and employed, which enabled to obtain a sufficient number of particle samples from the exhaust with Particulate Number (PN) 105 #/cc level for quantitative morphology analysis.
Technical Paper

Development of an On-Board Fuel Reforming Catalyst for a Gasoline Engine

2015-09-01
2015-01-1955
On-board hydrogen generation technology using a fuel reforming catalyst is an effective way to improve the fuel efficiency of automotive internal combustion engines. The main issue to be addressed in developing such a catalyst is to suppress catalyst deterioration caused by carbon deposition on the catalyst surface due to sulfur adsorption. Enhancing the hydrocarbon and water activation capabilities of the catalyst is important in improving catalyst durability. It was found that the use of a rare earth element is effective in improving the water activation capability of the catalyst. Controlling the hydrocarbon activation capability of the catalyst for a good balance with water activation was also found to be effective in improving catalyst durability.
X