Refine Your Search

Topic

Author

Search Results

Technical Paper

Understanding of LME Cracking Phenomenon in Spot Welding and Crack Prediction Using FE Analysis

2022-03-29
2022-01-0328
The application of high-strength steel sheets to car bodies is expanding to improve the crashworthiness and achieve weight reduction [1, 2]. Conversely, in recent years, the occurrence of liquid metal embrittlement (LME) cracks has been discussed in resistance spot welding using a Zn-based coated high-strength steel [3-5]. This study examined the factors causing LME cracks and identified the locations of LME cracks found in resistance spot welds using a Zn-coated high-strength steel sheet. Furthermore, through an analytical approach using a scanning electron microscopy (SEM) and transmission electron microscopy (TEM), for a joint with an LME crack, it was found that (1) grain boundary fracture occurred at LME crack portion and its fracture surface was covered with Zn, (2) Zn penetrated into prior-austenite grain boundaries near the LME crack, and (3) Zn concentration decreased toward the tip of the Zn-penetrated site.
Journal Article

Development of Precision Rolling Machine

2010-04-12
2010-01-0978
This paper proposes a rolling machine that forms fine corrugated section patterns for thin sheets. A prototype of the machine was made and the performance of the machine was tested. As compared with press forming, rolling has the advantages of the high forming limit, the low forming reaction force, the easy control of the thin sheet's curve and high productivity. We confirmed these four advantages by using finite element analyses and the prototype rolling machine. Stainless steel sheets and titanium sheets, which were one of the materials with a low forming limit, were used. Firstly, the rolling showed a 1.3-times higher forming limit than the press forming in the case that a fine corrugated section pattern was formed in a stainless steel sheet of 22-mm square sizes. Secondly, the forming reaction force of the rolling was about one-twentieth of the press forming without coining, and the experimental results agreed with the finite element simulation.
Technical Paper

Evaluation of the Corrosion Durability of Steel Systems for Automobile Fuel Tanks.

2005-04-11
2005-01-0540
The Strategic Alliance for Steel Fuel Tanks (SASFT), an international group of steel producers and manufacturing companies, recently completed a major corrosion study of various steel ‘systems’ for automobile fuel tanks. The ten steel systems included low carbon steels (either pre-painted or post-painted with protective coatings) and stainless steels. The 2-year corrosion test program included testing in salt solutions to simulate road environments for the exterior of a fuel tank. Special test specimens were designed to represent a manufactured tank. The external tests used were the Neutral Salt Spray test (ASTM B117) with exposures up to 2000 hours and the Cyclic Corrosion test (SAE J2334) with exposures up to 120 and 160 cycles to represent vehicle lives of 15 years and 20 years, respectively. Additionally, the resistance to an aggressive ethanol-containing fuel (internal tank corrosion) was assessed by using uniquely designed drawn cups of the various steel systems.
Technical Paper

A New Method of Stress Calculation in Spot Welded Joint and Its Application to Fatigue Life Prediction of Actual Vehicle

2003-10-27
2003-01-2809
A method of fatigue life prediction of spot welded joint under multi-axial loads has been developed by fatigue life estimation working groups in the committee on fatigue strength and structural reliability of JSAE. This method is based on the concept of nominal structural stress ( σ ns) proposed by Radaj and Rupp, and improved so that D value is not involved in stress calculation. The result of fatigue life estimation of actual vehicle with nominal structural stress which was calculated through newly developed method had very good correlation with the result of multi-axial loads fatigue test carried out with test piece including high strength steel.
Technical Paper

New 440MPa High-Strength Steel for Vehicle Outer-Panel

2003-10-27
2003-01-2832
New 440MPa class high-strength steel, which had high r-value(1.6) and elongation(38%), was applied to outer-panel for the first time in the world. In this development FEM simulation was carried out to clarify the necessary steel properties, and the production conditions in strip mill were established. 10-kg weight reduction was realized by using this steel.
Technical Paper

Fatigue life prediction for welded steel sheet structures

2003-10-27
2003-01-2878
In this paper the fatigue life of welded steel sheet structures is predicted by using FE-Fatigue, which is one of fatigue analysis software tools on the market, and these predicted results are evaluated by reference to corresponding experimental results. Also, we try to predict these structures by using two fatigue life prediction theories established by the JSAE fatigue and reliability committee to compare prediction results. It was confirmed that spot welds fatigue life predictions agree qualitatively with corresponding experimental results and arc welds fatigue life predictions are in good agreement with corresponding experimental results in cases where the SN curve database is modified appropriately.
Technical Paper

Integration of process operation in the fatigue calculation of sheets structural parts

2003-10-27
2003-01-2879
The main operations for the manufacturing of auto parts are the cutting of the flange and the stamping. In order to perform accurate fatigue calculation it is necessary to have the material properties for each point of the structure. Usually, only the fatigue curve obtained on the flat sheet with polished edges is used because it represents the basic metal behaviour. The real edge quality decreases the fatigue limit while the hardening induced by the stamping increases it. To take these effects into account allows a better fatigue calculation of the structural part.
Technical Paper

Development of Titanium Engine Valves for Motorcycles

2003-09-16
2003-32-0033
Recently, it has been expected that titanium alloy valves will be adopted at extremely high rate to motorcycle engines where higher engine performance is required than in automobiles. However, there were difficulties with respect to reliability required for motorcycle engines. The reason for this is that engine valves of motorcycle engines are not only smaller in stem diameter, but also used at a higher maximum engine speed than those of automobile engines. This study is about a development of titanium alloy engine valves that meet reliability requirements in motorcycle engines.
Technical Paper

Numerical Analysis of Thermal Stress Distribution in Metal Substrates for Catalytic Converters

2002-03-04
2002-01-0060
In order to quantitatively evaluate mechanical durability of metal substrates for catalytic converters under heat cycles, thermal stresses and strains were simulated by FEM elastic-plastic analysis. Flat and corrugated sheets constituting honeycomb structures were directly modeled by thick-shell elements without replacing the structures with equivalent solid elements. It was reported that an asymmetric joint structure with “Strengthened Outer Layer” could provide metal substrates with high mechanical durability against heat cycles and the results of analysis in this study could show their high durability. It is important for improvement of mechanical durability to control the location of initial cracks generation and the direction of their propagation.
Technical Paper

Effect of Strengthening Mechanism on Fatigue Properties of Hot-Rolled Sheet Steels

2002-03-04
2002-01-0042
The influence of tensile strength on fatigue strength and the effect of strengthening mechanism on fatigue notch factor were investigated into conventional mild steels, HSLA steels, DP steels and TRIP steels. The grade of studied steels was altered from 440MPa to 780MPa. Not only smooth fatigue specimens with side surface ground and smooth fatigue specimens with laser-cut side surface but also fatigue specimens with a pierced hole were prepared for each of steel sheets. Fatigue tests were conducted in an axial load method. These experiments made it clear that the fatigue limits of smooth specimen increase along the tensile strength approximately independent of strengthening mechanism but those of notched specimen do not necessarily increase along the tensile strength. Namely, fatigue limits of DP steels and TRIP steels with notch increase in proportion to tensile strength although those of HSLA steels with notch do not increase.
Technical Paper

Crashworthiness Improvement of the Side Crash by the Work Hardening Effect of Pre-Strained High Strength Steel

2001-10-16
2001-01-3112
In order to examine the compatibility of improvement of crashworthiness with weight saving of automobiles by using high strength steel, a combination analysis of Finite Element Method and Dynamic Mechanical Properties has been established. Material properties used in this analysis have been measured by “one bar method” high velocity tensile tests, which can examine the deformation behavior of materials at a bend crush speed range (∼55km/h). It was confirmed that the strength of steel measured by one bar method was raised remarkably after press and hydro forming of high strength steels. It was also confirmed by FEM analysis and load drop test that absorbed energy of bend crush was improved by pre-strain effect. Further, we proved that absorbed energy of bend crush was also improved by appropriate design of thickness and the ratio of bend span and plate length. These effects are applicable to respective high strength steels.
Technical Paper

Comparison between Experiments and FEM Simulation of High Velocity Tensile Test Methods to Clarify Test Method's Influence of High Strength Steel

2000-10-03
2000-01-2725
In order to examine the compatibility of improvement of crashworthiness with weight-saving of automobiles by using high strength steel, a combination analysis of Finite Element Method and Dynamic Mechanical Properties has been established. The material properties used in this analysis have been measured by “one bar method” high velocity tensile tests, which can examine the deformation behaviour of materials at an actual crash speed range (∼55km/h). As for the accuracy of this system, comparison between experiments and FEM simulation both of this test machine and other high-velocity-tensile-test machines have clarified the feature of one bar method and the metallurgical features of high velocity deformation. It was confirmed that the stress-strain curve measured by the one bar method agreed with that measured by the modified Split Hopkinson pressure bar method.
Technical Paper

Trend toward weight reduction of automobile body in Japan

2000-06-12
2000-05-0240
With society demanding automobiles that provide higher fuel efficiency, safety of occupants in collisions and that at the end of their service life can be recycled with low environmental impact, the steel industry is tackling the needs of the automobile industry by developing ever-higher performance steel materials and simulation technologies that can demonstrate the performance of steel materials at the development stage without the need for costly prototype testing. In this paper, weight reduction of automobile body in Japan will be discussed. The main items will be as follows: (1) Development of Automobile Steel Sheets, (2) Materials for Automobile Bodies, (3) Materials and Technologies (Tailored Blanks, Hydroforming and Locally Quenching) for Reducing the Weight of Panels and Reinforcing members, (4) Future Prospects.
Technical Paper

Metal Flow of a Tailored Blank in Square Cup Deep Drawing

1998-02-23
980447
The application of tailored blanks to autobody parts has progressed because of its numerous advantages. The forming of tailored blanks has, however, a lot of technical problems. Among the problems, weld-line movement and formability deterioration are the most significant ones in case of deep drawing. The weld-line movement and formability change were examined experimentally as a function of weld-line location in square cup deep drawing. The weld-line movement of tailored blank consists of two sources. One is the geometrical reason, and the other is due to the hardening of weld bead. The formability of tailored blank is inferior to that of an original blank by the existence of hardened weld region. The mode of fracture changes from wall breakage to a fracture adjacent to punch radius when the weld-line was close to the punch corner.
Technical Paper

High Durability of Metal Support for Automotive Catalyst

1995-02-01
950622
A metal support for use in an automotive catalyst is exposed to the severe heat cycle brought about by the intermittent flow of a high temperature exhaust gas. Accordingly, the metal support must have high beat resistance(ex. oxidation resistance) and a rigid structure. Therefore, 20% chromium-5% aluminum ferritic stainless steel(containing small quantities of rare earth metals and titanium) is used as a highly beat resistant honeycomb foil in addition to a highly mechanical durable brazing honeycomb structure. This study examined the durability of a metal honeycomb installed in a gasoline engine. Both an engine bench durability test of a manifold converter type metal support which is connected directly to the exhaust manifold of the gasoline engine and a vehicle durability test of an under the floor type metal support were carried out to evaluate oxidation damage of the metal honeycomb as well as its mechanical durability.
Technical Paper

Titanium Alloy Bar Suitable for Highly Efficient Wear-Resistance Treatment

1995-02-01
950940
To give the wear-resistance to titanium intake valves by simple oxidation treatment, oxidation condition and microstructure of Ti-6Al-4V bars were studied. The wear test using a valve simulator shows that the wear of the face oxidized at 820°C for 1 and 4h in air is superior to that of ferrous valves. The best micro-structure of Ti-6Al-4V bar is an acicular structure with the prior β grain size of 30 to 60 μ m in average, which prevents distortion during the oxidation treatment and has excellent mechanical properties.
Technical Paper

Forming Performance of Aluminum Alloy Sheets for Automobile Body Panels

1995-02-01
950924
Improvement of material characteristic values, adjustment of forming conditions as well as introduction of new forming technics are necessary to promote wide application of aluminum alloy sheets into automotive parts. 5000 series and 6000 series aluminum alloy sheets are concerned about the relationship between material characteristic values and fundamental forming ability required to apply them to automobile body parts as well as the effect of lubricant on their formability. The hardening parameters, n values, of them are larger than those of cold-rolled steel sheets. However, the r values and the local elongations are extremely small. The improvement of stretch formability owing to increase of n value is smaller than that of the steel sheets. Inferior deep drawability of the aluminum alloy sheets is due to low fracture resistance force caused by low r value.
Technical Paper

Strengthening of Surface Induction Hardened Parts for Automotive Shafts Subject to Torsional Load

1994-03-01
940786
The purpose of this study is twofold: to clarify the factors governing the torsional strength of surface induction hardened parts and, to present a method for strengthening automotive shaft parts for their weight reduction. The torsional strength against Mode III fracture can be expresssed by a new indicator, “equivalent hardness” defined as an average hardness weighted with the radius squared. If the equivalent hardness is continuously increased, the fracture mode change from Mode III to Mode I. The torsional strength against Mode I fracture is governed by grain boundary strength. Accordingly, the key-points in increasing the torsional strength of surface induction hardened parts are to raise the equivalent hardness and increase the grain boundary strength of the steel. By application of this method, the torsional strength of steel can be raised by 50%, which, in turn, enables about a 25% weight reduction for shaft parts.
Technical Paper

Development of High Strength Steel Sheet with Excellent Stretch Flange Formability for Automobile Application

1994-03-01
940943
With the aim of improving stretch-flange formability by further reducing carbides in steel, the authors studied the hole expansion ratio of a steel consisting entirely of ferrite and the factors governing the hole expansion ratio. Ultra low carbon steels adding Ti and/or Nb showed a higher hole expansion ratio than conventional steels, but their hole expansion ratio was not higher than the hole expansion ratio of bainitic steel reported before1). On the other hand, it was found from study of the relationship between hole expansion ratio and r-value of various steels, including cold-rolled interstitial-free steels, that the hole expansion ratio of a steel consisting only of the ferrite phase is strongly influenced by the minimum r-value and n-value and that it improves as the r- and n-values increase. The steel added Ti and/or Nb has a strong anisotropy of r-value, hence its minimum r-value is small. This is disadvantageous to hole expansion ratio.
Technical Paper

Perforation Corrosion of Automobiles - Field Car and Laboratory Investigation

1993-10-01
932367
In order to clarify the effect of design and materials of the hem as well as the climatic factors on perforation corrosion of the automobile doors, field car and laboratory investigation has been carried out Field car investigation revealed that corrosion of the hem can be minimized by using two side galvanized steel plus adhesives. The ratio of wet/dry environment was evaluated in laboratory on hemmed sample, and it was found that the design of the hem in conjunction with the various wet/dry ratio affected the corrosion rate differently.
X