Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of Mo-Free Ultra-High Strength 1.6-GPa Bolt with Delayed Fracture Resistance for Multi-Link Type Engine

2024-04-09
2024-01-2070
Mo-free 1.6-GPa bolt was developed for a Variable Compression Turbo (VC-Turbo) engine, which is environment friendly and improves fuel efficiency and output. Mo contributes to the improvement of delayed fracture resistance; therefore, the main objective is to achieve both high strength and delayed fracture resistance. Therefore, Si is added to the developed steel to achieve high strength and delayed fracture resistance. The delayed fracture tests were performed employing the Hc/He method. Hc is the limit of the diffusible hydrogen content without causing a delayed fracture under tightening, and He is the diffusible hydrogen content entering under a hydrogen-charging condition equivalent to the actual environment. The delayed fracture resistance is compared between the developed steel and the SCM440 utilized for 1.2-GPa class bolt as a representative of the current high-strength bolts.
Technical Paper

Development of model-based control system for a low pressure loop EGR with a negative pressure control valve

2023-09-29
2023-32-0153
To improve the fuel economy, we developed a turbo-charged spark ignition engine combined with a low pressure loop EGR system. A negative pressure control valve has been applied to achieve high EGR ratio in wide engine operation condition. In this paper, a new developed model-based control system for low pressure loop EGR with a negative pressure control valve will be described.
Technical Paper

Low Ash SP/GF-6 Fuel Eco Gasoline Engine Oil

2023-09-29
2023-32-0036
A gasoline particulate filter (GPF) is installed in a passenger vehicle for new exhaust regulation. However, ash in gasoline engine oil has a risk of clogging as well as performance decrease in the GPF. Therefore, new gasoline engine oil whose ash contents decrease to 0.8 mass% was developed in order to avoid the GPF clogging. In addition to this, our developed oil improves fuel efficiency (+0.2% from our SN 0W-16 fuel eco type oil) as well as anti-wear performance for gasoline engine, which resulted in meeting API SP/ILSAC GF-6 0W-16 official certification.
Technical Paper

Evaluation of Equivalent Temperature Using Thermal Factors : Validation of a Calculation Method Based on ISO 14505-4:2021 in a Vehicle Cabin

2022-03-29
2022-01-0190
This paper describes a method for evaluating the equivalent temperature in vehicle cabins based on the new international standard ISO 14505-4, published in 2021. ISO 14505-4 defines two simulation methods to determine a thermal comfort index “equivalent temperature.” One method uses a numerical thermal manikin, and the other uses thermal factors to calculate. This study discusses the latter method to validate its accuracy, identify the key points to consider, and examine its advantages and disadvantages. First, the definition of equivalent temperature and the equation to calculate the equivalent temperature using thermal factors, such as air temperature, radiant temperature, solar radiation, and air velocity, are explained. In addition, the experiments and simulation methods are described.
Journal Article

Stainless Steel Thermal Spray Coating of Cylinder Bores for VC-Turbo Engine

2021-04-06
2021-01-0343
Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced.
Technical Paper

Development of JASO GLV-1 0W-8 Low Viscosity Engine Oil for Improving Fuel Efficiency considering Oil Consumption and Engine Wear Performance

2020-04-14
2020-01-1423
Engine oil with viscosity lower than 0W-16 has been needed for improving fuel efficiency in the Japanese market. However, lower viscosity oil generally has negative aspects with regard to oil consumption and anti-wear performance. The technical challenges are to reduce viscosity while keeping anti-wear performance and volatility level the same as 0W-20 oil. They have been solved in developing a new engine oil by focusing on the molybdenum dithiocarbamate friction modifier and base oil properties. This paper describes the new oil that supports good fuel efficiency while reliably maintaining other necessary performance attributes.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Technical Paper

Is the “K Value” of an Engine Truly Fuel Independent?

2020-04-14
2020-01-0615
The octane appetite of an engine is frequently characterised by the so-called K value. It is usually assumed that K is dependent only on the thermodynamic conditions in the engine when knock occurs. In this work we test this hypothesis: further analysis was conducted on experimental results from SAE 2019-01-0035 in which a matrix of fuels was tested in a single cylinder engine. The fuels consisted of a relatively small number of components, thereby simplifying the analysis of the chemical kinetic proprieties. Through dividing the original fuel matrix into subsets, it was possible to explore the variation of K value with fuel properties. It was found that K value tends to increase slightly with RON. The explanation for this finding is that higher RON leads to advanced ignition timing (i.e. closer to MBT conditions) and advanced ignition timing results in faster combustion because of the higher pressures and temperatures reached in the thermodynamic trajectory.
Technical Paper

In-cylinder flow design based on the representative scales of turbulence and premixed combustion

2019-12-19
2019-01-2210
Dilution combustion with exhaust gas recirculation (EGR) has been applied for the improvement of thermal efficiency. In order to stabilize the high diluted combustion, it is important to form an appropriate turbulence in the combustion cylinder. Turbulent intensity needs to be strengthened to increase the combustion speed, while too strong turbulence causes ignition instability. In this study, the factor of combustion instability under high diluted conditions was analyzed by using single cylinder engine test, optical engine test and 3D CFD simulation. Finally, methodology of in-cylinder flow design is attempted to build without any function by taking into account the representative scales of turbulence and premixed combustion.
Technical Paper

New CO2 / Fuel Consumption Certification Cycles and Design Implications for Fuel Efficient Lubricants

2019-12-19
2019-01-2367
During this decade, the constant increase and globalization of passenger car sales has led countries to adopt a common language for the treatment of CO2 and other pollutant emissions. In this regard, the WLTC - World-wide harmonized Light duty Test Cycle - stands as the new global reference cycle for fuel consumption, CO2 and pollutant emissions across the globe. Regulations keep a constant pressure on CO2 emission reduction leading vehicle manufacturers and component suppliers to modify hardware to ensure compliance. Within this balance, lubricants remain worthwhile contributors to lowering CO2 emission and fuel consumption. Yet with WTLC, new additional lubricant designs are likely to be required to ensure optimized friction due to its new cycle operating conditions, associated powertrain hardware and worldwide product use.
Technical Paper

Design Methodology for Motor Thermal Management in Vehicle Electrification

2019-12-19
2019-01-2368
In order to improve the accuracy of the coil temperature prediction, detailed fundamental experiments have been conducted on thermal resistances that are caused by the void air gap and contact surfaces. The thermal resistance of the coil around the air gap can be calculated by an air gap distance and air heat conductivity. Contact surface thermal resistance between the core and the housing was constant regardless of the press-fitting state in this experiment. Prediction accuracy of the coil temperature is improved by including the heat resistance characteristics that is obtained by the basic experiment to conjugate heat transfer analysis model.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Technical Paper

Evaluation of Equivalent Temperature in a Vehicle Cabin with a Numerical Thermal Manikin (Part 2): Evaluation of Thermal Environment and Equivalent Temperature in a Vehicle Cabin

2019-04-02
2019-01-0698
In the previous paper (Part 1), measurements of equivalent temperature (teq) using a clothed thermal manikin and modeling of the clothed thermal manikin for teq simulation were discussed. In this paper (Part 2), the outline of the proposed mesh-free simulation method is described and comparisons between teq in the calculations and measurements under summer cooling with solar radiation and winter heating without solar radiation conditions in a vehicle cabin are discussed. The key factors for evaluating teq on each body segment of the clothed thermal manikin under cooling and heating conditions are also discussed. In the mesh-free simulation, even if there is a hole or an unnecessary shape on the CAD model, only a group of points whose density is controlled in the simulation area is generated without modifying the CAD model. Therefore, the fluid mesh required by conventional CFD code is not required, and the analysis load is significantly reduced.
Technical Paper

Evaluation of Equivalent Temperature in a Vehicle Cabin with a Numerical Thermal Manikin (Part 1): Measurement of Equivalent Temperature in a Vehicle Cabin and Development of a Numerical Thermal Manikin

2019-04-02
2019-01-0697
The present paper is Part 1 of two consecutive studies. Part 1 describes three subjects: definition of the equivalent temperature (teq), measurements of teq using a clothed thermal manikin in a vehicle cabin, and modeling of the clothed thermal manikin for teq simulation. After defining teq, a method for measuring teq with a clothed thermal manikin was examined. Two techniques were proposed in this study: the definition of “the total heat transfer coefficient between the skin surface and the environment in a standard environment (hcal)” based on the thermal insulation of clothing (Icl), and a method of measuring Icl in consideration of the area factor (fcl), which indicates the ratio of the clothing surface to the manikin surface area. Then, teq was measured in an actual vehicle cabin by the proposed method under two conditions: a summer cooling condition with solar radiation and a winter heating condition without solar radiation.
Technical Paper

Mechanism Analysis on the Effect of Fuel Properties on Knocking Performance at Boosted Conditions

2019-01-15
2019-01-0035
In recent years, boosted and downsized engines have gained much attention as a promising technology to improve fuel economy; however, knocking is a common issue of such engines that requires attention. To understand the knocking phenomenon under downsized and boosted engine conditions deeply, fuels with different Research Octane Number (RON) and Motor Octane Number (MON) were prepared, and the knocking performances of these fuels were evaluated using a single cylinder engine, operated under a variety of conditions. Experimental results showed that the knocking performance at boosted conditions depend on both RON and MON. While higher RON showed better anti-knocking performance, lower MON showed better anti-knocking performance. Furthermore, the tendency for a reduced MON to be beneficial became stronger at lower engine speeds and higher boost pressures, in agreement with previously published modelling work.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

NVH Development of a High Torque SUV Using a Novel Active Torque Rod System

2018-04-03
2018-01-0685
During the last decade, fuel economy mandates (CAFE regulations) have driven engine downsizing and down-speeding trends. More recently, downsized turbos are percolating down to heavier SUVs and trucks. Larger/heavier vehicles require high torque engines to provide attractive dynamic performance. While higher torque requirements can be satisfied with new innovations like the variable compression engine, larger and more upscale vehicles also need to deliver higher quietness requirements. For this, the vibration control system for combustion induced forces with high torque engines become very important. To address both dynamic performance and quietness requirements, active engine mounts have been previously adopted, however challenges for light-weighting, downsizing, and costs have still persisted.
Technical Paper

Development of a New 2L Gasoline VC-Turbo Engine with the World’s First Variable Compression Ratio Technology

2018-04-03
2018-01-0371
A new 2L gasoline turbo engine, named KR20DDET was developed with the world’s first mass-producible variable compression turbo (VC-Turbo) technology using a multi-link variable compression ratio (VCR) mechanism. It is well known that increasing the compression ratio improves gasoline engine thermal efficiency. However, there has always been a compromise for engine designers because of the trade-off between increasing the compression ratio and knocking. At Nissan we have been working on VCR technology for more than 20 years and have now successfully applied this technology to a mass production engine. This technology uses a multi-link mechanism to change the top and bottom dead center positions, thereby allowing the compression ratio to be continuously changed. The VC-Turbo engine with this technology can vary the compression ratio from 14:1 for obtaining high thermal efficiency to 8:1 for delivering high torque by taking advantage of the strong synergy with turbocharging.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
Technical Paper

Development of the New V6 3.5L Gasoline Direct Injection Engine

2017-03-28
2017-01-1022
1 The new V6 3.5L gasoline direct injection engine, VQ35DD, was developed for the midsize premium SUV segment. This engine is the newest descendant of the VQ engine family and incorporates the latest technologies focused on enhanced driving performance, combined with high-level of environmental performance. Additional improvements include torque and power increase as well as improved fuel economy and emission performance. Simultaneous realization of both throttle response and smoothness are also in focus. To achieve these features, direct injection system, high response motor-driven intake Continuously Variable Valve Timing Control (e-Motor VVT), individual spark timing, mirror bore spray coating on the cylinder block, and various friction reduction technologies, such as variable displacement oil pump, are applied. Maximum engine power and torque are increased by 8 to 10%. Minimum BSFC is improved by 6%, combined with a wider spread of lower BSFC range considering CVT applications.
X