Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle

2024-04-09
2024-01-2154
This paper presents an optimal control co-design framework of a parallel electric-hydraulic hybrid powertrain specifically tailored for heavy-duty vehicles. A pure electric powertrain, comprising a rechargeable lithium-ion battery, a highly efficient electric motor, and a single or double-speed gearbox, has garnered significant attention in the automotive sector due to the increasing demand for clean and efficient mobility. However, the state-of-the-art has demonstrated limited capabilities and has struggled to meet the design requirements of heavy-duty vehicles with high power demands, such as a class 8 semi-trailer truck. This is especially evident in terms of a driving range on one battery charge, battery charging time, and load-carrying capacity. These challenges primarily stem from the low power density of lithium-ion batteries and the low energy conversion efficiency of electric motors at low speeds.
Technical Paper

Low-Cost Open-Source Data Acquisition for High-Speed Cylinder Pressure Measurement with Arduino

2024-04-09
2024-01-2390
In-cylinder pressure measurement is an important tool in internal combustion engine research and development for combustion, cycle performance, and knock analysis in spark-ignition engines. In a typical laboratory setup, a sub crank angle resolved (typically between 0.1o and 0.5o) optical encoder is installed on the engine crankshaft, and a piezoelectric pressure transducer is installed in the engine cylinder. The charge signal produced by the transducer due to changes in cylinder pressure during the engine cycle is converted to voltage by a charge amplifier, and this analog voltage is read by a high-speed data acquisition (DAQ) system at each encoder trigger pulse. The high speed of engine operation and the need to collect hundreds of engine cycles for appropriate cycle-averaging requires significant processor speed and memory, making typical data acquisition systems very expensive.
Technical Paper

Algorithm to Calibrate Catalytic Converter Simulation Light-Off Curve

2024-04-09
2024-01-2630
Spark ignition engines utilize catalytic converters to reform harmful exhaust gas emissions such as carbon monoxide, unburned hydrocarbons, and oxides of nitrogen into less harmful products. Aftertreatment devices require the use of expensive catalytic metals such as platinum, palladium, and rhodium. Meanwhile, tightening automotive emissions regulations globally necessitate the development of high-performance exhaust gas catalysts. So, automotive manufactures must balance maximizing catalyst performance while minimizing production costs. There are thousands of different recipes for catalytic converters, with each having a different effect on the various catalytic chemical reactions which impact the resultant tailpipe gas composition. In the development of catalytic converters, simulation models are often used to reduce the need for physical parts and testing, thus saving significant time and money.
Technical Paper

Minimizing Steady-State Testing Time in an Engine Dynamometer Laboratory

2023-04-11
2023-01-0209
In the automotive industry, performing steady-state tests on an internal combustion engine can be a time consuming and costly process, but it is necessary to ensure the engine meets performance and emissions criteria set by the manufacturer and regulatory agencies. Any measures that can reduce the amount of time required to complete these testing campaigns provides significant benefits to manufacturers. The purpose of this work is then to develop a systematic approach to minimize the time required to conduct a steady-state engine test campaign using a Savitsky-Golay filter to calculate measured signal gradients for continuous steady-state detection. Experiments were conducted on an Armfield CM11-MKII Gasoline Engine test bench equipped with a 1.2L 3-cylinder Volkswagen EA111 R3 engine. The test bench utilizes throttle position control and an eddy current dynamometer braking system with automatic PID control of engine speed.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Event-Triggered Model Predictive Control for Autonomous Vehicle with Rear Steering

2022-03-29
2022-01-0877
This paper proposes a new nonlinear model predictive control (NMPC) for autonomous vehicle path tracking problem. The vehicle is equipped with active rear steering, allowing independent control of front and rear steering. Traditional NMPC, which runs at fixed sampling rate, has been shown to provide satisfactory control performance in this problem. However, the high throughput of NMPC limits its implementation in production vehicle. To address this issue, we propose a novel event-triggered NMPC formulation, where the NMPC is triggered to run only when the actual states deviate from prediction beyond certain threshold. In other words, the event-triggered NMPC will formulate and solve a constrained optimal control problem only if it is enabled by a trigger event. When NMPC is not triggered, the optimal control sequence computed from last NMPC instance is shifted to determine the control action.
Technical Paper

CAE Correlation of Sealing Pressure of a Press-in-Place Gasket

2021-04-06
2021-01-0299
The Press-in-Place (PIP) gasket is a static face seal with self-retaining feature, which is used for the mating surfaces of engine components to maintain the reliability of the closed system under various operating conditions. Its design allows it to provide enough contact pressure to seal the internal fluid as well as prevent mechanical failures. Insufficient sealing pressure will lead to fluid leakage, consequently resulting in engine failures. A test fixture was designed to simulate the clamp load and internal pressure condition on a gasket bolted joint. A sensor pad in combination with TEKSCAN equipment was used to capture the overall and local pressure distribution of the PIP gasket under various engine loading conditions. Then, the test results were compared with simulated results from computer models. Through the comparisons, it was found that gasket sealing pressure of test data and CAE data shows good correlations in all internal pressure cases when the bolt load was 500 N.
Technical Paper

Nonlinear System Identification of Variable Oil Pump for Model-Based Controls and Diagnostics

2021-04-06
2021-01-0392
This paper presents nonlinear system identification of a variable oil pump for model-based controls and diagnostics of advanced internal combustion engines. The variable oil pump offers great benefits over the conventional fixed displacement oil pump in terms of fuel efficiency and functional optimality. However, to fully benefit from the variable oil pump, an accurate mathematical model that describes its dynamic behavior is foundational to develop an accurate and robust oil pressure control and diagnostic. Toward this end, Hammerstein and Wiener models that consist of a nonlinear static block followed by a linear dynamic block and a linear dynamic block followed by a nonlinear static block, respectively are developed. Under different operating conditions (oil temperature and engine speed), the oil pressure (output) is measured with the multilevel duty cycle (input) of the flow control valve.
Technical Paper

Defining the Boundary Conditions of the CFR Engine under MON Conditions, and Evaluating Chemical Kinetic Predictions at RON and MON for PRFs

2021-04-06
2021-01-0469
Expanding upon the authors’ previous work which utilized a GT-Power model of the Cooperative Fuels Research (CFR) engine under Research Octane Number (RON) conditions, this work defines the boundary conditions of the CFR engine under Motored Octane Number (MON) test conditions. The GT-Power model was validated against experimental CFR engine data for primary reference fuel (PRF) blends between 60 and 100 under standard MON conditions, defining the full range of interest of MON for gasoline-type fuels. The CFR engine model utilizes a predictive turbulent flame propagation sub-model, and a chemical kinetic solver for the end-gas chemistry. The validation was performed simultaneously for thermodynamic and chemical kinetic parameters to match in-cylinder pressure conditions, burn rate, and knock point prediction with experimental data, requiring only minor modifications to the flame propagation model from previous model iterations.
Technical Paper

Application of Casting to Automotive ECU’s

2021-04-06
2021-01-0131
Casting is the ability to let users transfer their favorite videos, music, movies, etc. from their phone to a chosen display. This functionality has become very popular these days, and to the user, it is as simple as clicking a button. This “simple” task is a complex system that requires various independent sources to communicate efficiently and effectively to produce a robust and reliable output. The sending and receiving devices are required to be on the same network - which involves reliable and secure connection. This allows the sending of the URL of the chosen feature to the server provider, which will then connect to the receiver embedded electronics where the authentication process that protects Digital Rights Management (DRM) is established. In the era of developing autonomous and luxury vehicles, this technology has the potential to add a new dimension of in-vehicle entertainment that could come very close to the home experience.
Journal Article

Prediction of Spark Timing to Achieve a Specified Torque Profile in Spark-Ignition Engines Using Time-Dependent Metamodeling

2021-04-06
2021-01-0238
The internal combustion engine is a source of unwanted vibration on the vehicle body. The unwanted vibration comes from forces on the engine mounts which depend on the engine torque during a transient maneuver. In particular, during a tip-in or a tip-out maneuver, different torque profiles result in different magnitudes of vibration. A desired engine torque shape can be thus obtained to minimize the unwanted vibration. The desired torque shape can be achieved by controlling a set of engine calibration parameters. This paper provides a methodology to determine the spark timing profile to achieve a desired engine torque profile during a tip-out maneuver. The spark timing profiles are described by a third-order polynomial as a function of time. A set of coefficients to define a third-order polynomial (design sites) are first generated using design of experiments (DOE).
Technical Paper

Analysis of Sheet Metal Joining with Self-Piercing Riveting

2020-04-14
2020-01-0223
Self-piercing riveting (SPR) has been used in production to join sheet materials since the early 1990s. A large amount of experimental trial work was required in order to determine an appropriate combination of rivet and anvil design to fulfill the required joint parameters. The presented study is describing the methodology of SPR joint design based on numerical simulation and experimental methods of defining required simulation input parameters. The required inputs are the stress-strain curves of sheet materials and rivets for the range of strains taking place in the SPR joining process, parameters required for a fracture model for all involved materials, and friction parameters for all interfaces of SPR process. In the current study, the normalized Cockroft-Latham fracture criterion was used for predicting fracture. Custom hole and tube expansion tests were used for predicting fracture of the riveted materials and the rivet, respectively.
Technical Paper

A Two-Layer Soot Model for Hydrocarbon Fuel Combustion

2020-04-14
2020-01-0243
Experimental studies of soot particles showed that the intensity ratio of amorphous and graphite layers measured by Raman spectroscopy correlates to soot oxidation reactivities, which is very important for regeneration of the diesel particulate filters and gasoline particulate filters. This physical mechanism is absent in all soot models. In the present paper, a novel two-layer soot model was proposed that considers the amorphous and graphite layers in the soot particles. The soot model considers soot inception, soot surface growth, soot oxidation by O2 and OH, and soot coagulation. It is assumed that amorphous-type soot forms from fullerene. No soot coagulation is considered in the model between the amorphous- and graphitic-types of soot. Benzene is taken as the soot precursor, which is formed from acetylene. The model was implemented into a commercial CFD software CONVERGE using user defined functions. A diesel engine case was simulated.
Technical Paper

Computation of Safety Architecture for Electric Power Steering System and Compliance with ISO 26262

2020-04-14
2020-01-0649
Technological advancement in the automotive industry necessities a closer focus on the functional safety for higher automated driving levels. The automotive industry is transforming from conventional driving technology, where the driver or the human is a part of the control loop, to fully autonomous development and self-driving mode. The Society of Automotive Engineers (SAE) defines the level 4 of autonomy: “Automated driving feature will not require the driver to take over driving control.” Thus, more and more safety related electronic control units (ECUs) are deployed in the control module to support the vehicle. As a result, more complexity of system architecture, software, and hardware are interacting and interfacing in the control system, which increases the risk of both systematic and random hardware failures.
Technical Paper

Multiple 3D-DIC Systems for Measuring the Displacements and Strains of an Engine Exhaust Manifold

2020-04-14
2020-01-0540
In this study, a unique multi-camera three-dimensional digital image correlation (3D-DIC) system was designed and applied to an engine dynamometer cell to measure the displacement and strain of the exhaust manifold while an engine was running in a durability test. In the engine dynamometer cell, the ambient temperature varies from 25°C to 80°C~100°C cyclically and the exhaust manifold experiences high temperatures up to 900°C with high frequency vibrations. In order to obtain reliable data under such conditions, two 3D-DIC systems were designed and set up in the engine dynamometer. One is a high-speed 3D-DIC system, consisting of cameras with a sampling rate of 1250 frames per second. It was used to measure the local displacement of the bolted joint in the exhaust manifold. The high-speed measurement system is able to record the behavior of the bolt during the thermal cycles.
Technical Paper

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

2020-04-14
2020-01-1069
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode.
Journal Article

Prediction of Fuel Maps in Variable Valve Timing Spark Ignited Gasoline Engines Using Kriging Metamodels

2020-04-14
2020-01-0744
Creating a fuel map for simulation of an engine with Variable Valve Actuation (VVA) can be computationally demanding. Design of Experiments (DOE) and metamodeling is one way to address this issue. In this paper, we introduce a sequential process to generate an engine fuel map using Kriging metamodels which account for different engine characteristics such as load and fuel consumption at different operating conditions. The generated map predicts engine output parameters such as fuel rate and load. We first create metamodels to accurately predict the Brake Mean Effective Pressure (BMEP), fuel rate, Residual Gas Fraction (RGF) and CA50 (Crank Angle for 50% Heat Release after top dead center). The last two quantities are used to ensure acceptable combustion. The metamodels are created sequentially to ensure acceptable accuracy is achieved with a small number of simulations.
Technical Paper

Improvements to a CFR Engine Three Pressure Analysis GT-Power Model for HCCI and SI Conditions

2020-01-24
2019-32-0608
While experimental data measured directly on the engine are very valuable, there is a limitation of what measurements can be made without modifying the engine or the process that is being investigated, such as cylinder temperature. In order to supplement the experimental results, a Three Pressure Analysis (TPA) GT-Power model of the Cooperative Fuel Research (CFR) engine was previously developed and validated for estimating cylinder temperature and residual fraction. However, this model had only been validated for normal and knocking spark ignition (SI) combustion with RON-like intake conditions (naturally aspirated, <52 °C). This work presents improvements made to the GT-Power model and the expansion of its use for HCCI combustion. The burn rate estimation sub-model was modified to allow for low temperature heat release estimation and compression ignition operation.
Technical Paper

Prediction of Autoignition and Flame Properties for Multicomponent Fuels Using Machine Learning Techniques

2019-04-02
2019-01-1049
Machine learning methods, such as decision trees and deep neural networks, are becoming increasingly important and useful for data analysis in various scientific fields including dynamics and control, signal processing, pattern recognition, fluid mechanics, and chemical synthesis, etc. For future engine design and performance optimization, there is an urgent need for a robust predictive model which could capture the major combustion properties such as autoignition and flame propagation of multicomponent fuels under a wide range of engine operating conditions, without massive experimental measurement or computational efforts. It will be shown that these long-held limitations and challenges related to complex fuel combustion and engine research could be readily solved by implementing machine learning methods.
Technical Paper

Modelling of a Discrete Variable Compression Ratio (VCR) System for Fuel Consumption Evaluation - Part 1: Model Development

2019-04-02
2019-01-0467
Given increasingly stringent emission targets, engine efficiency has become of foremost importance. While increasing engine compression ratio can lead to efficiency gains, it also leads to higher in-cylinder pressure and temperatures, thus increasing the risk of knock. One potential solution is the use of a Variable Compression Ratio system, which is capable of exploiting the advantages coming from high compression ratio while limiting its drawbacks by operating at low engine loads with a high compression ratio, and at high loads with a low compression ratio, where knock could pose a significant threat. This paper describes the design of a model for the evaluation of fuel consumption for an engine equipped with a VCR system over representative drive cycles. The model takes as inputs; a switching time for the VCR system, the vehicle characteristics, engine performance maps corresponding to two different compression ratios, and a drive cycle.
X