Refine Your Search

Topic

Search Results

Technical Paper

Optimal Control Co-Design of a Parallel Electric-Hydraulic Hybrid Vehicle

2024-04-09
2024-01-2154
This paper presents an optimal control co-design framework of a parallel electric-hydraulic hybrid powertrain specifically tailored for heavy-duty vehicles. A pure electric powertrain, comprising a rechargeable lithium-ion battery, a highly efficient electric motor, and a single or double-speed gearbox, has garnered significant attention in the automotive sector due to the increasing demand for clean and efficient mobility. However, the state-of-the-art has demonstrated limited capabilities and has struggled to meet the design requirements of heavy-duty vehicles with high power demands, such as a class 8 semi-trailer truck. This is especially evident in terms of a driving range on one battery charge, battery charging time, and load-carrying capacity. These challenges primarily stem from the low power density of lithium-ion batteries and the low energy conversion efficiency of electric motors at low speeds.
Journal Article

Accelerating In-Vehicle Network Intrusion Detection System Using Binarized Neural Network

2022-03-29
2022-01-0156
Controller Area Network (CAN), the de facto standard for in-vehicle networks, has insufficient security features and thus is inherently vulnerable to various attacks. To protect CAN bus from attacks, intrusion detection systems (IDSs) based on advanced deep learning methods, such as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), have been proposed to detect intrusions. However, those models generally introduce high latency, require considerable memory space, and often result in high energy consumption. To accelerate intrusion detection and also reduce memory requests, we exploit the use of Binarized Neural Network (BNN) and hardware-based acceleration for intrusion detection in in-vehicle networks. As BNN uses binary values for activations and weights rather than full precision values, it usually results in faster computation, smaller memory cost, and lower energy consumption than full precision models.
Technical Paper

EV Battery Power Management for Supplying Smart Loads in Power Distribution Systems

2022-03-29
2022-01-0171
The number of EVs are increasing in power distribution systems every day. This research analyses different penetration levels of electric vehicles in power distribution systems to provide stable energy for smart devices and observes its impacts on operational costs and environmental emissions. The supply of EV power is determined based on smart device consumption by optimal energy management of EV batteries so that both the utilities and the car owner get benefits. Utilities can save energy by reducing system loss, while EV owners can earn money by selling it to utilities at their convenient time for smart device operations. The PG&E 69-bus distribution system is used for the simulation and case studies. Case studies in this research show how the power management of EV's batteries charging and discharging characteristics benefits both utilities and EV owners. The uncertainty of the driving pattern of EVs is also considered in the research to get more accurate results.
Technical Paper

Rule-Based Power Management Strategy of Electric-Hydraulic Hybrid Vehicles: Case Study of a Class 8 Heavy-Duty Truck

2022-03-29
2022-01-0736
Mobility in the automotive and transportation sectors has been experiencing a period of unprecedented evolution. A growing need for efficient, clean and safe mobility has increased momentum toward sustainable technologies in these sectors. Toward this end, battery electric vehicles have drawn keen interest and their market share is expected to grow significantly in the coming years, especially in light-duty applications such as passenger cars. Although the battery electric vehicles feature high performance and zero tailpipe emission characteristics, economic and technical issues such as battery cost, driving range, recharging time and infrastructure remain main hurdles that need to be fully addressed. In particular, the low power density of the battery limits its broad adoption in heavy-duty applications such as class 8 semi-trailer trucks due to the required size and weight of the battery and electric motor.
Technical Paper

Analyzing the Impact of Electric Vehicles on Power Losses and Voltage Profile in Power Distribution Systems

2022-03-29
2022-01-0748
As the number of electric vehicles (EVs) within society rapidly increase, the concept of maximizing its efficiency within the electric smart grid becomes crucial. This research presents the impacts of integrating EV charging infrastructures within a smart grid through a vehicle to grid (V2G) program. It also observes the circulation of electric charge within the system so that the electric grid does not become exhausted during peak hours. This paper will cover several different case studies and will analyze the best and worst scenarios for the power losses and voltage profiles in the power distribution system. Specifically, we seek to find the optimal location as well as the ideal number of EVs in the distribution system while minimizing its power losses and optimizing its voltage profile. Verification of the results are primarily conducted using GUIs created on MATLAB.
Technical Paper

EV Penetration for Minimizing Power System Emissions

2021-04-06
2021-01-0788
This work illustrates the potential of Electric Vehicles (EVs) as a grid support tool that will lower carbon emissions from both the energy production sector and the transportation sector. EVs can provide peak shaving power to the grid while discharging and valley filling power while charging to flatten the total load curve of a distribution system. The idea is called Vehicle to Grid (V2G). Flattening the load curve will allow utility providers to delay upgrading, or the purchase of new power generation stations, as well as best utilize renewable energy resources that may be uncontrollable in nature. Electrical energy production and transportation combined accounted for 2,534 million metric tons of carbon dioxide emissions in the US in 2019. Utilizing EVs for transportation as well as grid support will decrease this figure in each sector. This technology may pave the way to cleaner, more reliable, cost effective energy systems.
Technical Paper

CAE Correlation of Sealing Pressure of a Press-in-Place Gasket

2021-04-06
2021-01-0299
The Press-in-Place (PIP) gasket is a static face seal with self-retaining feature, which is used for the mating surfaces of engine components to maintain the reliability of the closed system under various operating conditions. Its design allows it to provide enough contact pressure to seal the internal fluid as well as prevent mechanical failures. Insufficient sealing pressure will lead to fluid leakage, consequently resulting in engine failures. A test fixture was designed to simulate the clamp load and internal pressure condition on a gasket bolted joint. A sensor pad in combination with TEKSCAN equipment was used to capture the overall and local pressure distribution of the PIP gasket under various engine loading conditions. Then, the test results were compared with simulated results from computer models. Through the comparisons, it was found that gasket sealing pressure of test data and CAE data shows good correlations in all internal pressure cases when the bolt load was 500 N.
Technical Paper

The Study of the Effective Contact Area of Suction Cup

2021-04-06
2021-01-0298
As the industry moves further into the automotive age, the failure of the cup during the transportation of the parts during the assembly process is costly. Among them, the effective contact area of the suction cup could influence the significant availability of the pressure, which is necessary to investigate the truth. The essential objective for this research is trying to improve the effectiveness of the suction cups during gripers work in company’s industry. In this research, the real work condition is simulated by the experimental setup to find the influence of the effective contact area. In this paper, the proper methodology to measure the effective area by testing different size cups under different conditions is described. The results are verified by the digital image correlation (DIC) technique.
Technical Paper

Nonlinear System Identification of Variable Oil Pump for Model-Based Controls and Diagnostics

2021-04-06
2021-01-0392
This paper presents nonlinear system identification of a variable oil pump for model-based controls and diagnostics of advanced internal combustion engines. The variable oil pump offers great benefits over the conventional fixed displacement oil pump in terms of fuel efficiency and functional optimality. However, to fully benefit from the variable oil pump, an accurate mathematical model that describes its dynamic behavior is foundational to develop an accurate and robust oil pressure control and diagnostic. Toward this end, Hammerstein and Wiener models that consist of a nonlinear static block followed by a linear dynamic block and a linear dynamic block followed by a nonlinear static block, respectively are developed. Under different operating conditions (oil temperature and engine speed), the oil pressure (output) is measured with the multilevel duty cycle (input) of the flow control valve.
Technical Paper

Defining the Boundary Conditions of the CFR Engine under MON Conditions, and Evaluating Chemical Kinetic Predictions at RON and MON for PRFs

2021-04-06
2021-01-0469
Expanding upon the authors’ previous work which utilized a GT-Power model of the Cooperative Fuels Research (CFR) engine under Research Octane Number (RON) conditions, this work defines the boundary conditions of the CFR engine under Motored Octane Number (MON) test conditions. The GT-Power model was validated against experimental CFR engine data for primary reference fuel (PRF) blends between 60 and 100 under standard MON conditions, defining the full range of interest of MON for gasoline-type fuels. The CFR engine model utilizes a predictive turbulent flame propagation sub-model, and a chemical kinetic solver for the end-gas chemistry. The validation was performed simultaneously for thermodynamic and chemical kinetic parameters to match in-cylinder pressure conditions, burn rate, and knock point prediction with experimental data, requiring only minor modifications to the flame propagation model from previous model iterations.
Technical Paper

Computation of Safety Architecture for Electric Power Steering System and Compliance with ISO 26262

2020-04-14
2020-01-0649
Technological advancement in the automotive industry necessities a closer focus on the functional safety for higher automated driving levels. The automotive industry is transforming from conventional driving technology, where the driver or the human is a part of the control loop, to fully autonomous development and self-driving mode. The Society of Automotive Engineers (SAE) defines the level 4 of autonomy: “Automated driving feature will not require the driver to take over driving control.” Thus, more and more safety related electronic control units (ECUs) are deployed in the control module to support the vehicle. As a result, more complexity of system architecture, software, and hardware are interacting and interfacing in the control system, which increases the risk of both systematic and random hardware failures.
Technical Paper

EV Penetration Impacts on Environmental Emissions and Operational Costs of Power Distribution Systems

2020-04-14
2020-01-0973
This research assesses the integration of different levels of electric vehicles (EVs) in the distribution system and observes its impacts on environmental emissions and power system operational costs. EVs can contribute to reducing the environmental emission from two different aspects. First, by replacing the traditional combustion engine cars with EVs for providing clean and environment friendly transportation and second, by integrating EVs in the distribution system through the V2G program, by providing power to the utility during peak hours and reducing the emission created by hydrocarbon dependent generators. The PG&E 69-bus distribution system (DS) is used to simulate the integration of EVs and to perform energy management to assess the operational costs and emissions. The uncertainty of driving patterns of EVs are considered in this research to get more accurate results.
Technical Paper

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

2020-04-14
2020-01-1069
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode.
Journal Article

A Decision Based Mobility Model for Semi and Fully Autonomous Vehicles

2020-04-14
2020-01-0747
With the emergence of intelligent ground vehicles, an objective evaluation of vehicle mobility has become an even more challenging task. Vehicle mobility refers to the ability of a ground vehicle to traverse from one point to another, preferably in an optimal way. Numerous techniques exist for evaluating the mobility of vehicles on paved roads, both quantitatively and qualitatively, however, capabilities to evaluate their off-road performance remains limited. Whereas a vehicle’s off-road mobility may be significantly enhanced with intelligence, it also introduces many new variables into the decision making process that must be considered. In this paper, we present a decision analytic framework to accomplish this task. In our approach, a vehicle’s mobility is modeled using an operator’s preferences over multiple mobility attributes of concern. We also provide a method to analyze various operating scenarios including the ability to mitigate uncertainty in the vehicles inputs.
Journal Article

Prediction of Fuel Maps in Variable Valve Timing Spark Ignited Gasoline Engines Using Kriging Metamodels

2020-04-14
2020-01-0744
Creating a fuel map for simulation of an engine with Variable Valve Actuation (VVA) can be computationally demanding. Design of Experiments (DOE) and metamodeling is one way to address this issue. In this paper, we introduce a sequential process to generate an engine fuel map using Kriging metamodels which account for different engine characteristics such as load and fuel consumption at different operating conditions. The generated map predicts engine output parameters such as fuel rate and load. We first create metamodels to accurately predict the Brake Mean Effective Pressure (BMEP), fuel rate, Residual Gas Fraction (RGF) and CA50 (Crank Angle for 50% Heat Release after top dead center). The last two quantities are used to ensure acceptable combustion. The metamodels are created sequentially to ensure acceptable accuracy is achieved with a small number of simulations.
Journal Article

A Multi-Resonant Speed Piezoelectric Beam Device for Harvesting Energy from Vehicle Wheels

2020-04-14
2020-01-1236
This work analyzes a cantilevered piezoelectric beam device for harvesting energy from the simultaneous rotation and translational vibration of vehicle wheels. The device attaches to the wheel rim so that it displaces tangentially during operation. A lumped-parameter analytical model for the coupled electromechanical system is derived. The device has one natural frequency that is speed-dependent because of centripetal acceleration affecting the total stiffness of the device. Even though the device has one natural frequency, it experiences three resonances as the rotation speed varies. One resonance occurs when the rotation speed coincides with the speed-dependent natural frequency of the device. The other two resonances are associated with excitations from the vibration of the vehicle wheel. The device’s parameters are chosen so that these three resonances occur when the wheel travels near 30 mph, 55 mph, and 70 mph.
Technical Paper

Modelling of a Discrete Variable Compression Ratio (VCR) System for Fuel Consumption Evaluation - Part 1: Model Development

2019-04-02
2019-01-0467
Given increasingly stringent emission targets, engine efficiency has become of foremost importance. While increasing engine compression ratio can lead to efficiency gains, it also leads to higher in-cylinder pressure and temperatures, thus increasing the risk of knock. One potential solution is the use of a Variable Compression Ratio system, which is capable of exploiting the advantages coming from high compression ratio while limiting its drawbacks by operating at low engine loads with a high compression ratio, and at high loads with a low compression ratio, where knock could pose a significant threat. This paper describes the design of a model for the evaluation of fuel consumption for an engine equipped with a VCR system over representative drive cycles. The model takes as inputs; a switching time for the VCR system, the vehicle characteristics, engine performance maps corresponding to two different compression ratios, and a drive cycle.
Technical Paper

Modelling of a Discrete Variable Compression Ratio (VCR) System for Fuel Consumption Evaluation - Part 2: Modelling Results

2019-04-02
2019-01-0472
Variable Compression Ratio systems are an increasingly attractive solution for car manufacturers in order to reduce vehicle fuel consumption. By having the capability to operate with a range of compression ratios, engine efficiency can be significantly increased by operating with a high compression ratio at low loads, where the engine is normally not knock-limited, and with a low compression ratio at high load, where the engine is more prone to knock. In this way, engine efficiency can be maximized without sacrificing performance. This study aims to analyze how the effectiveness of a VCR system is affected by various powertrain and vehicle parameters. By using a Matlab model of a VCR system developed in Part 1 of this work, the influence of the vehicle characteristics, the drive cycle, and of the number of stages used in the VCR system was studied.
Technical Paper

A Computational Study on Laminar Flame Propagation in Mixtures with Non-Zero Reaction Progress

2019-04-02
2019-01-0946
Flame speed data reported in most literature are acquired in conventional apparatus such as the spherical combustion bomb and counterflow burner, and are limited to atmospheric pressure and ambient or slightly elevated unburnt temperatures. As such, these data bear little relevance to internal combustion engines and gas turbines, which operate under typical pressures of 10-50 bar and unburnt temperature up to 900K or higher. These elevated temperatures and pressures not only modify dominant flame chemistry, but more importantly, they inevitably facilitate pre-ignition reactions and hence can change the upstream thermodynamic and chemical conditions of a regular hot flame leading to modified flame properties. This study focuses on how auto-ignition chemistry affects flame propagation, especially in the negative-temperature coefficient (NTC) regime, where dimethyl ether (DME), n-heptane and iso-octane are chosen for study as typical fuels exhibiting low temperature chemistry (LTC).
Journal Article

Reliability and Cost Trade-Off Analysis of a Microgrid

2018-04-03
2018-01-0619
Optimizing the trade-off between reliability and cost of operating a microgrid, including vehicles as both loads and sources, can be a challenge. Optimal energy management is crucial to develop strategies to improve the efficiency and reliability of microgrids, as well as new communication networks to support optimal and reliable operation. Prior approaches modeled the grid using MATLAB, but did not include the detailed physics of loads and sources, and therefore missed the transient effects that are present in real-time operation of a microgrid. This article discusses the implementation of a physics-based detailed microgrid model including a diesel generator, wind turbine, photovoltaic array, and utility. All elements are modeled as sources in Simulink. Various loads are also implemented including an asynchronous motor. We show how a central control algorithm optimizes the microgrid by trying to maximize reliability while reducing operational cost.
X