Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

Study on State-of-the-Art Preventive Maintenance Techniques for ADS Vehicle Safety

2023-04-11
2023-01-0846
1 Autonomous Driving Systems (ADS) are developing rapidly. As vehicle technology advances to SAE level 3 and above (L4, L5), there is a need to maximize and verify safety and operational benefits. As a result, maintenance of these ADS systems is essential which includes scheduled, condition-based, risk-based, and predictive maintenance. A lot of techniques and methods have been developed and are being used in the maintenance of conventional vehicles as well as other industries, but ADS is new technology and several of these maintenance types are still being developed as well as adapted for ADS. In this work, we are presenting a systematic literature review of the “State of the Art” knowledge for the maintenance of a fleet of ADS which includes fault diagnostics, prognostics, predictive maintenance, and preventive maintenance.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head and Neck Complex Finite Element Model

2023-04-11
2023-01-0557
The National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) Anthropomorphic Test Device (ATD) to improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) ATD. The improvements of the LODC over the HIII-10C include changes in sub-assemblies such as the head and neck, where the LODC head is a redesigned HIII-10C head with pediatric mass properties and the neck has a modified atlanto-occipital joint to replicate observations made from human specimens. The current study focuses on developing a dynamic, nonlinear finite element (FE) model of the LODC ATD head and neck complex. The FE mesh is generated using HyperMesh based on the three-dimensional CAD model. The material data, contact definitions and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The initial and boundary conditions are defined to replicate the neck flexion experimental tests.
Technical Paper

Design Methodology for Energy Storage System in Motorsports Using Statistical Analysis of Mission Profile

2022-03-29
2022-01-0662
In recent years, many motorsports have been developing competitions based on electric vehicles. The demanding performance requires the battery pack to have the perfect balance between energy, power, and weight. This research paper presents a systematic methodology for the initial design of the battery pack (size and cell chemistry) by statistically analyzing the characteristics of the mission profile. The power profile for the battery pack of a motorsport vehicle can be estimated by considering the duty cycle of a racing car using the technical and sporting regulations and vehicle parameters. In this paper, many statistical metrics correlated to this power profile have been defined and analyzed (such as the max, mean, and standard deviation of the power profile, the total energy consumed, and the expected heat generation). These metrics have been used to estimate the cell energy and power density requirement and the pack sizing considering the weight constraints.
Technical Paper

Assessment of Driving Simulators for Use in Longitudinal Vehicle Dynamics Evaluation

2022-03-29
2022-01-0533
In the last decade, the use of Driver-in-the-Loop (DiL) simulators has significantly increased in research, product development, and motorsports. To be used as a verification tool in research, simulators must show a level of correlation with real-world driving for the chosen use case. This study aims to assess the validity of a low-cost, limited travel Vehicle Dynamics Driver-in-Loop (VDDiL) simulator by comparing on-road and simulated driving data using a statistical evaluation of longitudinal and lateral metrics. The process determines if the simulator is appropriate for verifying control strategies and optimization algorithms for longitudinal vehicle dynamics and evaluates consistency in the chosen metrics. A validation process explaining the experiments, choice of metrics, and analysis tools used to perform a validation study from the perspective of the longitudinal vehicle model is shown in this study.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head Finite Element Model

2021-04-06
2021-01-0922
To improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD), the National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) ATD. The LODC head is a redesigned HIII-10C head with mass properties and modified skin material required to match pediatric biomechanical impact response targets from the literature. A dynamic, nonlinear finite element (FE) model of the LODC head has been developed using the mesh generating tool Hypermesh based on the three-dimensional CAD model. The material data, contact definitions, and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The aluminum head skull is stiff relative to head flesh material and was thus modeled as a rigid material. For the actual LODC, the head flesh is form fit onto the skull and held in place through contact friction.
Journal Article

Crash Factor Analysis in Intersection-Related Crashes Using SHRP 2 Naturalistic Driving Study Data

2021-04-06
2021-01-0872
Intersections have a high risk of vehicle-to-vehicle conflicts because of the overlapping traffic flow from multiple roads. To understand the factors contributing to the crashes, this study examines the common characteristics in intersection-related crash and near- crash events, such as the existence of traffic control devices, the driver at fault, and occurrence of visual obstructions. The descriptive data of the crash and near-crash events recorded in the Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 NDS) database is used in categorization and statistical analysis in this study. First, the events are divided into seven categories based on trajectories of the conflicting vehicles. The categorization provides the basis for in-depth analysis of crash-contributing factors in specific confliction patterns. Subsequently, descriptive statistics are used to portray each of the categories.
Technical Paper

Effects of Anti-Sway Bar Separation on the Handling Characteristics of a SUV

2021-04-06
2021-01-0976
A single-vehicle crash involving an SUV led to the study of the failure of the anti-sway bar linkage and tire pressure and their relative effects on the handling characteristics of the vehicle. The SUV, having been involved in a rollover, was found with the anti-sway bar drop link disconnected from the suspension lower A-arm assembly. Also, after the crash, the tire pressure in the front tires on the subject vehicle was measured to be above the value specified by the SUV manufacturer; however, the pressure for one of the rear tires was measured to be roughly half of the SUV manufacturer’s recommended pressure. The other rear tire was deflated. The testing described herein addresses the question of what effects the anti-sway bar drop link disconnection or reduced rear axle tire pressure would have on the SUV’s pre-accident handling and driveability.
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Technical Paper

Model-Based Design of a Hybrid Powertrain Architecture with Connected and Automated Technologies for Fuel Economy Improvements

2020-04-14
2020-01-1438
Simulation-based design of connected and automated hybrid-electric vehicles is a challenging problem. The design space is large, the systems are complex, and the influence of connected and autonomous technology on the process is a new area of research. The Ohio State University EcoCAR Mobility Challenge team developed a comprehensive design and simulation approach as a solution. This paper covers the detailed simulation work conducted after initial design space reduction was performed to arrive at a P0-P4 hybrid vehicle with a gasoline engine. Two simulation environments were deployed in this strategy, each with unique advantages. The first was Autonomie, which is a commercial software tool that is well-validated through peer-reviewed studies. This allowed the team to evaluate a wide range of components in a robust simulation framework.
Technical Paper

Transformational Technologies Reshaping Transportation - An Academia Perspective

2019-10-14
2019-01-2620
This paper and the associated lecture present an overview of technology trends and of market and business opportunities created by technology, as well as of the challenges posed by environmental and economic considerations. Commercial vehicles are one of the engines of our economy. Moving goods and people efficiently and economically is a key to continued industrial development and to strong employment. Trucks are responsible for nearly 70% of the movement of goods in the USA (by value) and represent approximately 300 billion of the 3.21 trillion annual vehicle miles travelled by all vehicles in the USA while public transit enables mobility and access to jobs for millions of people, with over 10 billion trips annually in the USA creating and sustaining employment opportunities.
Technical Paper

Application of Adversarial Networks for 3D Structural Topology Optimization

2019-04-02
2019-01-0829
Topology optimization is a branch of structural optimization which solves an optimal material distribution problem. The resulting structural topology, for a given set of boundary conditions and constraints, has an optimal performance (e.g. minimum compliance). Conventional 3D topology optimization algorithms achieve quality optimized results; however, it is an extremely computationally intensive task which is, in general, impractical and computationally unachievable for real-world structural optimal design processes. Therefore, the current development of rapid topology optimization technology is experiencing a major drawback. To address the issues, a new approach is presented to utilize the powerful abilities of large deep learning models to replicate this design process for 3D structures. Adversarial models, primarily Wasserstein Generative Adversarial Networks (WGAN), are constructed which consist of 2 deep convolutional neural networks (CNN) namely, a discriminator and a generator.
Technical Paper

Optimizing Battery Cooling System for a Range Extended Electric Truck

2019-04-02
2019-01-0158
Battery packs used in electrified automotive powertrains support heavy electrical loads resulting in significant heat generation within them. Cooling systems are used to regulate the battery pack temperatures, helping to slow down battery aging. Vehicle-level energy consumption simulations serve as a first step for determining the specifications of a battery cooling system based on the duty cycle and interactions with the rest of the powertrain. This paper presents the development of a battery model that takes into account the energy impact of heating in the battery and demonstrates its use in a vehicle-level energy consumption simulator to set the specifications of a suitable cooling system for a vehicle application. The vehicle application used in this paper is a Class 6 Pickup and Delivery commercial vehicle with a Range-Extended Electric Vehicle (REEV) powertrain configuration.
Technical Paper

Estimation of Cutting Parameters in Two-Stage Piercing to Reduce Edge Strain Hardening

2019-04-02
2019-01-1092
Edge fracture is a common problem when forming advanced high strength steels (AHSS). A particular case of edge fracture occurs during a collar forming/hole extrusion process, which is widely used in the sheet metal forming industry. This study attempts to relate the edge stretchability in collar forming to the strain hardening along the pierced edge; thus, Finite Element (FE) simulations can be used to reduce the number of experiments required to improve cutting settings for a given material and thickness. Using a complex-phase steel, CP-W 800 with thickness of 4.0 mm, a single-stage piercing operation is compared with a two-stage piercing operation, so called shaving, in terms of strains along the pierced edge, calculated by FE simulation. Results indicated that strains were reduced along the pierced edge by shaving.
Technical Paper

Use of Hardware in the Loop (HIL) Simulation for Developing Connected Autonomous Vehicle (CAV) Applications

2019-04-02
2019-01-1063
Many smart cities and car manufacturers have been investing in Vehicle to Infrastructure (V2I) applications by integrating the Dedicated Short-Range Communication (DSRC) technology to improve the fuel economy, safety, and ride comfort for the end users. For example, Columbus, OH, USA is placing DSRC Road Side Units (RSU) to the traffic lights which will publish traffic light Signal Phase and Timing (SPaT) information. With DSRC On Board Unit (OBU) equipped vehicles, people will start benefiting from this technology. In this paper, to accelerate the V2I application development for Connected and Autonomous Vehicles (CAV), a Hardware in the Loop (HIL) simulator with DSRC RSU and OBU is presented. The developed HIL simulator environment is employed to implement, develop and evaluate V2I connected vehicle applications in a fast, safe and cost-effective manner.
Technical Paper

Reducing Fuel Consumption by Using Information from Connected and Automated Vehicle Modules to Optimize Propulsion System Control

2019-04-02
2019-01-1213
Global regulatory targets and customer demand are driving the automotive industry to improve vehicle fuel efficiency. Methods for achieving increased efficiency include improvements in the internal combustion engine and an accelerating shift toward electrification. A key enabler to maximizing the benefit from these new powertrain technologies is proper systems integration work - including developing optimized controls for the propulsion system as a whole. The next step in the evolution of improving the propulsion management system is to make use of available information not typically associated with the powertrain. Advanced driver assistance systems, vehicle connectivity systems and cloud applications can provide information to the propulsion management system that allows a shift from instantaneous optimization of fuel consumption, to optimization over a route. In the current paper, we present initial work from a project being done as part of the DOE ARPA-E NEXTCAR program.
Technical Paper

Development of Virtual Fuel Economy Trend Evaluation Process

2019-04-02
2019-01-0510
With the advancement of the autonomous vehicle development, the different possibilities of improving fuel economy have increased significantly by changing the driver or powertrain response under different traffic conditions. Development of new fuel-efficient driving strategies requires extensive experiments and simulations in traffic. In this paper, a fuel efficiency simulator environment with existing simulator software such as Simulink, Vissim, Sumo, and CarSim is developed in order to reduce the overall effort required for developing new fuel-efficient algorithms. The simulation environment is created by combining a mid-sized sedan MATLAB-Simulink powertrain model with a realistic microscopic traffic simulation program. To simulate the traffic realistically, real roads from urban and highway sections are modeled in the simulator with different traffic densities.
Technical Paper

Modeling, Control, and Adaptation for Shift Quality Control of Automatic Transmissions

2019-04-02
2019-01-1129
The parameters determining shift quality control in automatic transmissions are determined as part of the calibration of the transmission control. The resulting control system typically has three components: feedforward control, where the control output is determined before a gearshift; feedback control, where the control output is determined during the gearshift based on sensed feedback; and learning control (adaptation), where the feedforward or feedback controller parameters are modified after the current gearshift has ended and before the next similar gearshift begins. Gearshifts involving the same ratio change are referred to here as similar gearshifts, though such gearshifts may involve differences in other variables such as vehicle speed or engine torque.
Journal Article

Driver’s Response Prediction Using Naturalistic Data Set

2019-04-02
2019-01-0128
Evaluating the safety of Autonomous Vehicles (AV) is a challenging problem, especially in traffic conditions involving dynamic interactions. A thorough evaluation of the vehicle’s decisions at all possible critical scenarios is necessary for estimating and validating its safety. However, predicting the response of the vehicle to dynamic traffic conditions can be the first step in the complex problem of understanding vehicle’s behavior. This predicted response of the vehicle can be used in validating vehicle’s safety. In this paper, models based on Machine Learning were explored for predicting and classifying driver’s response. The Naturalistic Driving Study dataset (NDS), which is part of the Strategic Highway Research Program-2 (SHRP2) was used for training and validating these Machine Learning models.
Technical Paper

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels

2017-03-28
2017-01-0226
This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
X