Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite

2019-04-02
2019-01-0521
Adiabatic heating during plastic straining can slow the diffusionless shear transformation of austenite to martensite in steels that exhibit transformation induced plasticity (TRIP). However, the extent to which the transformation is affected over a strain rate range of relevance to automotive stamping and vehicle impact events is unclear for most third-generation advanced high strength TRIP steels. In this study, an 1180MPa minimum tensile strength TRIP steel with carbide-free bainite is evaluated by measuring the variation of retained austenite volume fraction (RAVF) in fractured tensile specimens with position and strain. This requires a combination of servo-hydraulic load frame instrumented with high speed stereo digital image correlation for measurement of strains and ex-situ synchrotron x-ray diffraction for determination of RAVF in fractured tensile specimens.
Technical Paper

High Speed Ridged Fasteners for Multi-Material Joining

2019-04-02
2019-01-1117
Automobile manufacturers are reducing the weight of their vehicles in order to meet strict fuel economy legislation. To achieve this goal, a combination of different materials such as steel, aluminum and carbon fiber composites are being considered for use in vehicle bodies. The ability to join these different materials is an ongoing challenge and an area of research for automobile manufacturers. Multiridged fasteners are a viable option for this type of multi-material joining. Commercial systems exist and are being used in the industry, however, new ridged nail designs offer the potential for improvement in several areas. The goal of this paper is to prototype and test a safer flat-end fastener whilst not compromising on strength characteristics, to prevent injury to factory workers. The nails were prototyped using existing RIVTAC® nails.
Technical Paper

Estimation of Cutting Parameters in Two-Stage Piercing to Reduce Edge Strain Hardening

2019-04-02
2019-01-1092
Edge fracture is a common problem when forming advanced high strength steels (AHSS). A particular case of edge fracture occurs during a collar forming/hole extrusion process, which is widely used in the sheet metal forming industry. This study attempts to relate the edge stretchability in collar forming to the strain hardening along the pierced edge; thus, Finite Element (FE) simulations can be used to reduce the number of experiments required to improve cutting settings for a given material and thickness. Using a complex-phase steel, CP-W 800 with thickness of 4.0 mm, a single-stage piercing operation is compared with a two-stage piercing operation, so called shaving, in terms of strains along the pierced edge, calculated by FE simulation. Results indicated that strains were reduced along the pierced edge by shaving.
Technical Paper

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels

2017-03-28
2017-01-0226
This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
Technical Paper

Determination of Fracture Strain of Advanced High Strength Steels Using Digital Image Correlation in Combination with Thinning Measurement

2017-03-28
2017-01-0314
Fracture strain data provide essential information for material selection and serve as an important failure criterion in computer simulations of crash events. Traditionally, the fracture strain was measured by evaluating the thinning at fracture using tools such as a microscope or a point micrometer. In the recent decades, digital image correlation (DIC) has evolved as an advanced optical technique to record full-field strain history of materials during deformation. Using this technique, a complete set of the fracture strains (including major, minor, and thickness strains) can be approximated for the material. However, results directly obtained from the DIC can be dependent on the experiment setup and evaluation parameters, which potentially introduce errors to the reported values.
Technical Paper

Impact of Servo Press Motion on Hole Flanging of High Strength Steels

2017-03-28
2017-01-0311
The capabilities of the servo press for varying the ram speed during stroke and for adjusting the stroke length are well known. Various companies installed servo presses for blanking. Some of the considerations may include increase in productivity and flexibility in adjusting the ram stroke, noise reduction and improvement of edge quality of blanked edge. The objectives of this study are to determine the effect of ram (blanking) speed upon the edge quality, and the effect of multiple step blanking using several punch motions, during one blanking stroke.
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

2016-04-05
2016-01-0419
The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Technical Paper

Impact Welding of Aluminum Alloy 6061 to Dual Phase 780 Steel Using Vaporizing Foil Actuator

2015-04-14
2015-01-0701
Vaporizing Foil Actuators (VFA) are based on the phenomenon of rapid vaporization of thin metallic foils and wires, caused by passage of a capacitor bank driven current on the order of 100 kA. The burst of the conductor is accompanied with a high-pressure pulse, which can be used for working metal at high strain rates. This paper focuses on the use of VFA for collision welding of dissimilar metals, in particular, aluminum and steel. Aluminum alloy 6061 sheets of 1 mm thickness were launched to velocities in excess of 650 m/s with input electrical energy of 8 kJ into 0.0762 mm thick, dog-bone shaped aluminum foil actuators. Target sheets made from dual phase steel (DP780) were impacted with the aluminum flyer sheet, and solid state impact welds were created. During mechanical testing, many samples failed outside the weld area, thereby indicating that the weld was stronger than the parent aluminum.
Technical Paper

Integrated Approach to the Selection of Cost-Effective and Lean Process and Equipment in Forming

1999-03-01
1999-01-0423
A significant number of formed parts constitute the components of an automobile or aircraft. The formed blanks for the components are produced at different temperatures ranging from room temperature to 2250 degrees Fahrenheit for steel. Forming progressions convert a basic shape or geometry (a cylindrical billet, for example) of metal into a more complex shape close to the required final component geometry. The progression steps, choice of temperatures and equipment significantly impact the cost of the blank. A ‘Discriminating Cost Model’ was developed to capture the cost effectiveness of a given choice of process or equipment, and an AI (Artificial Intelligence) search algorithm implemented to quickly search through the large number of process and equipment selection options to arrive at the most cost effective choice. Two applications of this methodology to existing plant processes to significantly reduce cost and implement ‘lean’ principles of manufacturing are discussed.
X