Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Improving Emissions, Noise and Fuel Economy Trade-Off by using Multiple Injection Strategies in Diesel Low Temperature Combustion (LTC) Mode

2010-10-25
2010-01-2162
Latest emissions standards impose very low NOx and particle emissions that have led to new Diesel combustion operating conditions, such as low temperature combustion (LTC). The principle of LTC is based on enhancing air fuel mixing and reducing combustion temperature, reducing raw nitrogen oxides (NOx) and particle emissions. However, new difficulties have arisen. LTC is typically achieved through high dilution rates and low CR, resulting in increased auto-ignition delay that produces significant noise and deteriorates the combustion phasing. At the same time, lower combustion temperature and reduced oxygen concentration increases hydrocarbon (HC) and carbon oxide (CO) emissions, which can be problematic at low load. Therefore, if LTC is a promising solution to meet future emission regulations, it imposes a new emissions, fuel consumption and noise trade-off. For this, the injection strategy is the most direct mean of controlling the heat release profile and fuel air mixture.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Matching and Evaluating Methods for Euro 6 and Efficient Two-stage Turbocharging Diesel Engine

2010-04-12
2010-01-1229
While fuel efficiency has to be improved, future Diesel engine emission standards will further restrict vehicle emissions, particularly of nitrogen oxides. Increased in-cylinder filling is recognized as a key factor in addressing this issue, which calls for advanced design of air and exhaust gas recirculation circuits and high cooling capabilities. As one possible solution, this paper presents a 2-stage boosting breathing architecture, specially dedicated to improving the trade-off between emissions and fuel consumption instead of seeking to improve specific power on a large family vehicle equipped with a 1.6-liter Diesel engine. In order to do it, turbocharger matching was specifically optimized to minimize engine-out NOx emissions at part-load and consumption under common driving conditions. Engine speed and load were analyzed on the European driving cycle. The key operating points and associated upper boundary for NOx emission were identified.
Journal Article

Advanced Injection Strategies for Controlling Low-Temperature Diesel Combustion and Emissions

2009-06-15
2009-01-1962
The simultaneous reduction of engine-out nitrogen oxide (NOx) and particulate emissions via low-temperature combustion (LTC) strategies for compression-ignition engines is generally achieved via the use of high levels of exhaust gas recirculation (EGR). High EGR rates not only result in a drastic reduction of combustion temperatures to mitigate thermal NOx formation but also increases the level of pre-mixing thereby limiting particulate (soot) formation. However, highly pre-mixed combustion strategies such as LTC are usually limited at higher loads by excessively high heat release rates leading to unacceptable levels of combustion noise and particulate emissions. Further increasing the level of charge dilution (via EGR) can help to reduce combustion noise but maximum EGR rates are ultimately restricted by turbocharger and EGR path technologies.
Journal Article

A Comparison of Combustion and Emissions Behaviour in Optical and Metal Single-Cylinder Diesel Engines

2009-06-15
2009-01-1963
Single cylinder optical engines are used for internal combustion (IC) engine research as they allow for the application of qualitative and quantitative non-intrusive, diagnostic techniques to study in-cylinder flow, mixing, combustion and emissions phenomena. Such experimental data is not only important for the validation of computational models but can also provide a detailed insight into the physical processes occurring in-cylinder which is useful for the further development of new combustion strategies such as gasoline homogeneous charge compression ignition (HCCI) and Diesel low temperature combustion (LTC). In this context, it is therefore important to ensure that the performance of optical engines is comparable to standard all-metal engines. A comparison of optical and all-metal engine combustion and emissions performance was performed within the present study.
Journal Article

Online Implementation of an Optimal Supervisory Control for a Parallel Hybrid Powertrain

2009-06-15
2009-01-1868
The authors present the supervisory control of a parallel hybrid powertrain, focusing on several issues related to the real-time implementation of optimal control based techniques, such as the Equivalent Consumption Minimization Strategies (ECMS). Real-time implementation is introduced as an intermediate step of a complete chain of tools aimed at investigating the supervisory control problem. These tools comprise an offline optimizer based on Pontryagin Minimum Principle (PMP), a two-layer real-time control structure, and a modular engine-in-the-loop test bench. Control results are presented for a regulatory drive cycle with the aim of illustrating the benefits of optimal control in terms of fuel economy, the role of the optimization constraints dictated by drivability requirements, and the effectiveness of the feedback rule proposed for the adaptation of the equivalence factor (Lagrange multiplier).
Technical Paper

Optimal Design for a Highly Downsized Gasoline Engine

2009-06-15
2009-01-1794
The combination of air charging and downsizing is known to be an efficient solution to reduce CO2 emissions of modern gasoline engines. The decrease of the cubic capacity and the increase of the specific performance help to reduce the fuel consumption by limiting pumping and friction losses and even the losses of energy by heat transfer. Investigations have been conducted on a highly downsized SI engine to confirm if a strong decrease of the displacement (50 %) was still interesting regarding the fuel consumption reduction and if other ways were possible to improve further more its efficiency. The first aim of our work was to identify the optimal design (bore, stroke, displacement, …) that could maximize the consumption reduction potential at part load but also improve the engine's behaviour at very high load (up to 3.0 MPa IMEP from 1000 rpm). In order to do that, four engine configurations with different strokes and bores have been tested and compared.
Journal Article

Reduction of the Compression Ratio on a HSDI Diesel Engine: Combustion Design Evolution for Compliance the Future Emission Standards

2008-04-14
2008-01-0839
Environment protection issues regarding CO2 emissions as well as customers requirements for fun-to-drive and fuel economy explain the strong increase of Diesel engine on European market share in all passenger car segments. To comply future purposes of emission regulations, particularly dramatic decrease in NOx emissions, technology need to keep upgrading; the reduction of the volumetric compression ratio (VCR) is one of the most promising research ways to allow a simultaneous increase in power at full load and NOx / PM trade-off improvement at part load. This study describes the combustion effects of the reduction of compression ratio and quantifies improvements obtained at full load and part load running conditions on a HSDI Common Rail engine out performance (power, fuel consumption, emissions and noise). Potential and limitations of a reduced compression ratio from 18:1 to 14:1 are underlined.
Journal Article

System Approach for Compliance with Full Load Targets on a Wall Guided Diesel Combustion System

2008-04-14
2008-01-0840
Low temperature combustion concept as HCCI is one of the most promising research ways to comply future emission regulations of Diesel passenger vehicles. IFP promoted this concept with NADI™ (Narrow Angle Direct Injection) combustion design whose original approach lies on a fuel spray guided by the bowl central tip to the re-entrant. For full load operating range, one of the key issue for success is to use as much as possible available air in the combustion chamber in order to reach low value of air fuel ratio, and therefore high value of specific power and specific torque. In this study, engine tests on a single cylinder engine with NADI™ concept are performed at full load; 3-D calculations as well as air/fuel mixing process visualizations in a constant volume vessel with optical access allowed to establish criteria for helping future combustion system design for full load operation.
Journal Article

Using Multiple Injection Strategies in Diesel Combustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off in Low CR Engines

2008-04-14
2008-01-1329
In former high compression ratio Diesel engines a single injection was used to introduce the fuel into the combustion chamber. With actual direct injection engines which exhibit a compression ratio between 17:1 and 18:1 single or multiple early injections called “pilot injections” are also added in order to reduce the combustion noise. For after-treatment reasons a late injection during the expansion stroke named “post injection” may also be used in some operating conditions. Investigations have been conducted on lower compression ratio Diesel engine and in high EGR rate operating conditions to evaluate the benefits of multiple injection strategies to improve the trade off between engine emissions, noise and fuel economy.
Technical Paper

Development of Highly Premixed Combustion Diesel Model: From Simulation to Control Design

2006-04-03
2006-01-1072
In the context of increasingly stringent pollution norms, reduced engine emissions are a great challenge for compressed ignition engines. After-treatment solutions are expensive and very complex to implement, while the NOx/PM trade-off is difficult to optimise for conventional Diesel engines. Therefore, in-cylinder pollutant production limitation by the HPC combustion mode (Highly Premixed Combustion) - including Homogeneous Charge Compression Ignition (HCCI) - represents one of the most promising ways for new generation of CI engine. For this combustion technology, control based on torque estimation is crucial: the objectives are to accurately control the cylinder-individual fuel injected mass and to adapt the fuel injection parameters to the in-cylinder conditions (fresh air and burned gas masses and temperature).
Technical Paper

Six Degrees Crankshaft Individual Air Fuel Ratio Estimation of Diesel Engines for Cylinder Balancing Purpose

2006-04-03
2006-01-0013
In the context of modern engine control, one important variable is the individual Air Fuel Ratio (AFR) which is a good representation of the produced torque. It results from various inputs such as injected quantities, boost pressure, and the exhaust gas recirculation (EGR) rate. Further, for forthcoming HCCI engines and regeneration filters (Particulate filters, DeNOx), even slight AFR unbalance between the cylinders can have dramatic consequences and induce important noise, possible stall and higher emissions. Classically, in Spark Ignition engine, overall AFR is directly controlled with the injection system. In this approach, all cylinders share the same closed-loop input signal based on the single λ-sensor (normalized Fuel-Air Ratio measurement, it can be rewritten with AFR as they have the same injection set-point.
Technical Paper

Formulation of a One-Component Fuel Lumping Model to Assess the Effects of Fuel Thermodynamic Properties on Internal Combustion Engine Mixture Preparation and Combustion

2004-06-08
2004-01-1996
A lumping model has been formulated to calculate the thermodynamic properties required for internal combustion engine multidimensional computations, including saturation pressure, latent heat of vaporization, liquid density, surface tension, viscosity, etc. This model consists firstly in reducing the analytical data to a single (i.e. pure) pseudo-component characterized by its molecular weight, critical pressure and temperature, and acentric factor. For a gasoline fuel, the required analytical data are those provided by gas chromatography. For a Diesel fuel, the required data are a true boiling point (TBP) distillation curve and the fuel density at a single temperature. This model provides a valuable tool for studying the effects of fuel physical properties upon the behavior of a vaporizing spray in a chamber, as well as upon direct injection gasoline and Diesel engines using the multidimensional (3D) KMB code.
Technical Paper

Development of the High Power NADI™ Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions

2002-05-06
2002-01-1744
Due to their high thermal efficiency coupled with low CO2 emissions, Diesel engines are promised to an increasing part of the transport market if their NOx and particulate emissions are reduced. Today, adequate after-treatments, NOx and PM traps are under industrialization with still concerns about fuel economy, robustness, sensitivity to fuel sulfur and cost because of their complex and sophisticated strategy. New combustion process such as Homogeneous Charge Compression Ignition (HCCI) are investigated for their potential to achieve near zero particulate and NOx emissions. Their main drawbacks are too high hydrocarbons (HC) and carbon monoxide (CO) emissions, combustion control at high load and then limited operating range and power output. As an answer for challenges the Diesel engine is facing, IFP has developed a combustion system able to reach near zero particulate and NOx emissions while maintaining performance standards of the D.I Diesel engines.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Technical Paper

Advanced Tools for Analysis of Gasoline Direct Injection Engines

2000-06-19
2000-01-1903
A methodology which uses simultaneously 3D calculations and advanced experimental tools has been developed in order to characterize air-fuel mixing and combustion of gasoline direct injection engines at every stage of development. The analysis of Mitsubishi GDI engine has been carried out in order to validate this approach. The experimental tools used in this analysis underline the great cycle-to-cycle variability and show that the air-fuel ratio variations at spark plug correlate closely with the fluctuations of combustion starting and development. Despite this variability, average measurements are reproducible and in good agreement with 3D computational results obtained with KIVA-MB code. The common use of both kinds of tools allows to get a very fine understanding of Mitsubishi wall-guided concept.
X