Refine Your Search

Topic

Author

Search Results

Technical Paper

Fuel Property Effects of a Broad Range of Potential Biofuels on Mixing Control Compression Ignition Engine Performance and Emissions

2021-04-06
2021-01-0505
Conventional diesel engines will continue to hold a vital role in the heavy- and medium-duty markets for the transportation of goods along with many other uses. The ability to offset traditional diesel fuels with low-net-carbon biofuels could have a significant impact on reducing the carbon footprint of these vehicles. A prior study screened several hundred candidate biofuel blendstocks based on required diesel blendstock properties and identified 12 as the most promising. Eight representative biofuel blendstocks were blended at a 30% volumetric concentration with EPA certification ultra-low-sulfur diesel (ULSD) and were investigated for emissions and fuel efficiency performance. This study used a single cylinder engine (based on the Ford 6.7L engine) using Conventional Diesel Combustion (CDC), also known as Mixing Control Compression Ignition (MCCI). The density, cetane number, distillation curve and sooting tendency (using the yield sooting index method) of the fuels were measured.
Journal Article

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
Technical Paper

Micro-Channel Heat Exchanger: An Exhaust Waste Heat Recovery Device

2018-04-03
2018-01-0052
Almost one-third of the fuel energy is wasted through the exhaust of a vehicle. An efficient waste heat recovery (WHR) process will undoubtedly lead to improved fuel efficiency and reduced greenhouse gases (GHG) emission. Currently, there are multiple WHR technologies that are being investigated by various entities in the auto industry. One relatively simple device to extract heat energy from the exhaust is a heat exchanger. Heat exchangers are used in some automotive applications to transfer heat from the hot exhaust gas to the colder coolant fluid to raise the coolant temperature. The warmer coolant fluid can be used for several purposes such as; faster heating of the engine’s lubrication oil and transmission fluids during cold starts, and faster cabin heating, which in turn, can potentially improve the overall engine efficiency and reduce exhaust emissions.
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

2014-04-01
2014-01-0791
A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Journal Article

Modeling Species Inhibition and Competitive Adsorption in Urea-SCR Catalysts

2012-04-16
2012-01-1295
Although the urea-SCR technology exhibits high NO reduction efficiency over a wide range of temperatures among the lean NO reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. Urea-SCR catalysts exhibit poor NO reduction performance at low-temperature operating conditions (T ≺ 150°C). We postulate that the poor performance is either due to NH₃ storage inhibition by species like hydrocarbons or due to competitive adsorption between NH₃ and other adsorbates such as H₂O and hydrocarbons in the exhaust stream. In this paper we attempt to develop one-dimensional models to characterize inhibition and competitive adsorption in Fe-zeolite-based urea-SCR catalysts based on bench reactor experiments.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Technical Paper

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine

2011-04-12
2011-01-1220
The objective of this research is a detailed investigation of particulate sizing and number count from a spark-ignited, direct-injection (SIDI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four-valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded.
Technical Paper

Hydrocarbon Effect on a Fe-zeolite Urea-SCR Catalyst: An Experimental and Modeling Study

2010-04-12
2010-01-1171
Synergies between various catalytic converters such as SCR and DPF are vital to the success of an integrated aftertreatment system for simultaneous NO and particulate matter control in diesel engines. Several issues such as hydrocarbon poisoning, thermal aging and other coupled aftertreatment dynamics need to be addressed to develop an effective emission control system. This work is significant especially in an integrated DPF-SCR aftertreatment scenario where the SCR catalyst on the filter substrate is exposed to un-burnt diesel hydrocarbons during active regeneration of the particulate filter. This paper reports an experimental and modeling study to understand the effect of hydrocarbons on a Fe-zeolite urea-SCR catalyst. Several bench-reactor tests to understand the inhibition of NO oxidation, to characterize hydrocarbon storage and to investigate the impact of hydrocarbons on SCR reactions were conducted.
Journal Article

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

2009-11-02
2009-01-2769
The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and1H/13C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT™) apparatus.
Technical Paper

The Chemistry, Properties, and HCCI Combustion Behavior of Refinery Streams Derived from Canadian Oil Sands Crude

2008-10-06
2008-01-2406
Diesel fuels derived from different types of crude oil can exhibit different chemistry while still meeting market requirements and specifications. Oil sands derived fuels typically contain a larger proportion of cycloparaffinic compounds, which result from the cracking and hydrotreating of bitumens in the crude. In the current study, 17 refinery streams consisting of finished fuels and process streams were obtained from a refinery using 100% oil sands derived crude oil. All samples except one met the ULSD standard of 15 ppm sulfur. The samples were characterized for properties and chemistry and run in a simple premixed HCCI engine using intake heating for combustion phasing control. Results indicate that the streams could be equally well characterized by chemistry or properties, and some simple correlations are presented. Cetane number was found to relate mainly to mono-aromatic content and the cycloparaffins did not appear to possess any unique diesel related chemical effects.
Technical Paper

Modeling of Friction Stir Welding (FSW) Process with Smooth Particle Hydrodynamics (SPH)

2006-04-03
2006-01-1394
Since its invention fifteen years ago, Friction Stir Welding (FSW) has found commercial applications in marine, aerospace, rail, and now automotive industries. Development of the FSW process for each new application, however, has remained largely empirical. Few detailed numerical modeling techniques have been developed that can explain and predict important features of the process physics. This is particularly true in the areas of material flow, mixing mechanisms, and void prediction. In this paper we present a novel modeling approach to simulate FSW processes that may have significant advantages over current traditional finite element or finite difference based methods. The proposed model is based on the Smoothed Particle Hydrodynamics (SPH) method.
Technical Paper

Effects of Failure Modes on Strength of Aluminum Resistance Spot Welds

2005-04-11
2005-01-0906
This paper examines the effects of failure modes on the static strength and total energy absorption of aluminum spot-welded samples using experimental, statistical, and analytical approaches. The main failure modes for aluminum spot welds are nugget pullout and interfacial fracture. Two populations of aluminum spot welds were studied. Within each population, coupon configurations of lap shear, cross tension and coach peel were considered. Thirty replicate static strength tests were performed for each coupon configuration. The resulted peak load and energy absorption level associated with each failure mode was studied using statistical models. Next, an analytical model was developed to determine the failure mode of an aluminum resistance spot weld based on stress analysis. It is found that weld size, sheet thickness, and level of weld porosity and defects are the main factors determining the cross tension failure mode for an aluminum spot weld.
Technical Paper

Evaluation of the Mechanical Performance of Self-Piercing Rivets in Friction Stir Welded Structures

2005-04-11
2005-01-1259
This paper presents the coupon performance data of friction stir welded tailor welded blanks (TWBs) joined to a monolithic aluminum sheet by self-piercing rivets (SPRs). Uniaxial tensile tests were performed to characterize the joint strength and the total energy absorption capability of the TWB/monolithic sheet joint assemblies. Cyclic fatigue tests were also conducted to characterize the fatigue behavior and failure mechanisms of the jointed assemblies. This study provides data for the automotive designer to determine whether friction stir welded aluminum TWB/monolithic sheet joints are within the target joint strengths for a particular application if it should be pierced during the assembly process.
Technical Paper

The Formability of Friction Stir Welds in Automotive Stamping Environments

2005-04-11
2005-01-1258
Automobile body and truck cab structures are composed primarily of stampings formed from monolithic and constant gage blanks. Cost and weight penalties can arise when strength or other requirements in one small area of the part leads to the use of a material or gage that is overmatched to the needs of the rest of the stamping. Tailor Welded Blanks (TWBs) are hybrid sheet products composed of either different materials or different thickness sheets that are joined together, then subjected to a stamping operation to create a formed assembly. The strategy is employed generally to save weight and material costs in the formed assembly by placing higher strength or thicker sections only where needed. The forming or stamping process requires the joint to be severely deformed along with the parent sheets. Aluminum TWBs for automotive applications are particularly problematic because of the low formability of aluminum weld metal.
Technical Paper

Steady-State Engine Testing of γ-Alumina Catalysts Under Plasma Assist for NOx Control in Heavy-Duty Diesel Exhaust

2003-03-03
2003-01-1186
A slipstream of exhaust from a Caterpillar 3126B engine was diverted into a plasma-catalytic NOx control system in the space velocity range of 7,000 to 100,000 hr-1. The stream was first fed through a non-thermal plasma that was formed in a coaxial cylinder dielectric barrier discharge reactor. Plasma treated gas was then passed over a catalyst bed held at constant temperature in the range of 573 to 773 K. Catalysts examined consisted of γ-alumina, indium-doped γ-alumina, and silver-doped γ-alumina. Road and rated load conditions resulted in engine out NOx levels of 250 - 600 ppm. The effects of hydrocarbon level, catalyst temperature, and space velocity are discussed where propene and in one case ultra-low sulfur diesel fuel (late cycle injection) were the reducing agents used for NOx reduction. Results showed NOx reduction in the range of 25 - 97% depending on engine operating conditions and management of the catalyst and slipstream conditions.
Technical Paper

Describing the Formability of Tailor Welded Blanks

2002-07-09
2002-01-2085
This paper presents two methods of characterizing and describing the formability of tailor welded blanks (TWB). The first method involves using miniature tensile specimens, extracted from TWB weld material, to quantify mechanical properties and material imperfection within TWB welds. This technique combines statistical methods of describing material imperfection together with conventional M-K method modeling techniques to determine safe forming limit diagrams for weld material. The second method involves the use of an extended M-K method modeling technique, which places multiple material thickness and material imperfections inside one overall model of TWB performance. These methods of describing TWB formability and their application to specific aluminum TWB populations are described.
Technical Paper

Characterization of Acid Sites in Ion-exchanged and Solid State-exchanged Zeolites

2001-09-24
2001-01-3571
Brønsted acidity of solution ion-exchanged and solid-state exchanged zeolites was compared for NaY, BaY, CaY, NaX, and CaX zeolites. These materials were chosen because they all exhibit catalytic activity in SCR of NOx in combination with a non-thermal plasma. Brønsted acidity was characterized qualitatively with retinol as an indicator dye. Our results show that the solid-state exchange using a chloride salt creates zeolites with lower acidity than zeolites obtained by conventional solution ion-exchange. NO2 adsorption was also found to create a significant quantity of acid sites at room temperature and a slight increase in acidity at 200°C. We speculate that the acid sites created by NO2 adsorption, because of their vicinity to metal cation sites in the zeolite, may lead to preferential reactions that lead to NOx reduction. BaY made by solution ion-exchange and BaY made by solid-state exchange using a chloride salt were tested for NOx reduction in a plasma-catalyst reactor system.
X