Refine Your Search

Topic

Author

Search Results

Viewing 1 to 19 of 19
Technical Paper

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Advancements and Opportunities for On-Board 700 Bar Compressed Hydrogen Tanks in the Progression Towards the Commercialization of Fuel Cell Vehicles

2017-03-28
2017-01-1183
Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
Journal Article

Modeling Species Inhibition and Competitive Adsorption in Urea-SCR Catalysts

2012-04-16
2012-01-1295
Although the urea-SCR technology exhibits high NO reduction efficiency over a wide range of temperatures among the lean NO reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. Urea-SCR catalysts exhibit poor NO reduction performance at low-temperature operating conditions (T ≺ 150°C). We postulate that the poor performance is either due to NH₃ storage inhibition by species like hydrocarbons or due to competitive adsorption between NH₃ and other adsorbates such as H₂O and hydrocarbons in the exhaust stream. In this paper we attempt to develop one-dimensional models to characterize inhibition and competitive adsorption in Fe-zeolite-based urea-SCR catalysts based on bench reactor experiments.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Technical Paper

Diesel Particulate Oxidation Model: Combined Effects of Volatiles and Fixed Carbon Combustion

2010-10-25
2010-01-2127
Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
Technical Paper

Hydrocarbon Effect on a Fe-zeolite Urea-SCR Catalyst: An Experimental and Modeling Study

2010-04-12
2010-01-1171
Synergies between various catalytic converters such as SCR and DPF are vital to the success of an integrated aftertreatment system for simultaneous NO and particulate matter control in diesel engines. Several issues such as hydrocarbon poisoning, thermal aging and other coupled aftertreatment dynamics need to be addressed to develop an effective emission control system. This work is significant especially in an integrated DPF-SCR aftertreatment scenario where the SCR catalyst on the filter substrate is exposed to un-burnt diesel hydrocarbons during active regeneration of the particulate filter. This paper reports an experimental and modeling study to understand the effect of hydrocarbons on a Fe-zeolite urea-SCR catalyst. Several bench-reactor tests to understand the inhibition of NO oxidation, to characterize hydrocarbon storage and to investigate the impact of hydrocarbons on SCR reactions were conducted.
Technical Paper

Challenges in Developing Hydrogen Direct Injection Technology for Internal Combustion Engines

2008-10-06
2008-01-2379
Development status and insight on a “research level” piezoelectric direct injection fuel injection system for prototype hydrogen Internal Combustion Engines (ICEs) is described. Practical experience accumulated from specialized material testing, bench testing and engine operation have helped steer research efforts on the fuel injection system. Recent results from a single cylinder engine are also presented, including demonstration of 45% peak brake thermal efficiency. Developing ICEs to utilize hydrogen can result in cost effective power plants that can potentially serve the needs of a long term hydrogen roadmap. Hydrogen direct injection provides many benefits including improved volumetric efficiency, robust combustion (avoidance of pre-ignition and backfire) and significant power density advantages relative to port-injected approaches with hydrogen ICEs.
Technical Paper

Safety Training for the Hydrogen Economy

2006-04-03
2006-01-0329
The Pacific Northwest National Laboratory (PNNL) and the Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Training and Education Center are helping to prepare emergency responders and permitting/code enforcement officials for their respective roles in the gradual transition to the hydrogen economy. Safety will be a critical component of the anticipated hydrogen transition. Public confidence goes hand in hand with perceived safety to such an extent that, without it, the envisioned transition is unlikely to occur. Stakeholders and the public must be reassured that hydrogen, although very different from gasoline and other conventional fuels, is no more dangerous. Ensuring safety in the hydrogen infrastructure will require a suitably trained emergency response force for containing the inevitable incidents as they occur, coupled with knowledgeable code officials to ensure that such incidents are kept to a minimum.
Technical Paper

Steady-State Engine Testing of γ-Alumina Catalysts Under Plasma Assist for NOx Control in Heavy-Duty Diesel Exhaust

2003-03-03
2003-01-1186
A slipstream of exhaust from a Caterpillar 3126B engine was diverted into a plasma-catalytic NOx control system in the space velocity range of 7,000 to 100,000 hr-1. The stream was first fed through a non-thermal plasma that was formed in a coaxial cylinder dielectric barrier discharge reactor. Plasma treated gas was then passed over a catalyst bed held at constant temperature in the range of 573 to 773 K. Catalysts examined consisted of γ-alumina, indium-doped γ-alumina, and silver-doped γ-alumina. Road and rated load conditions resulted in engine out NOx levels of 250 - 600 ppm. The effects of hydrocarbon level, catalyst temperature, and space velocity are discussed where propene and in one case ultra-low sulfur diesel fuel (late cycle injection) were the reducing agents used for NOx reduction. Results showed NOx reduction in the range of 25 - 97% depending on engine operating conditions and management of the catalyst and slipstream conditions.
Technical Paper

Selective Reduction of NOx in Oxygen Rich Environments with Plasma-Assisted Catalysis: The Role of Plasma and Reactive Intermediates

2001-09-24
2001-01-3513
The catalytic activity of selected materials (BaY and NaY zeolites, and γ-alumina) for selective NOx reduction in combination with a non-thermal plasma was investigated. Our studies suggest that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, all materials that are active in plasma-assisted catalysis were found to be very effective for the thermal reduction of NOx in the presence of aldehydes. For example, the thermal catalytic activity of a BaY zeolite with aldehydes gives 80-90% NOx removal at 250°C with 200ppm NOx at the inlet and a VHSV=12,000 h-1. The hydrocarbon reductants, n-octane and 1-propyl alcohol, have also shown high thermal catalytic activity for NOx removal over BaY, NaY and γ-alumina.
Technical Paper

Cascade Processing of NOx by Two-Step Discharge/Catalyst Reactors

2001-09-24
2001-01-3509
We present here a phenomenological analysis of a cascade of two-step discharge-catalyst reactors. That is, each step of the cascade consists of a discharge reactor in series with a catalyst bed. These reactors are intended for use in the reduction of tailpipe emission of NOx from diesel engines. The discharge oxidizes NO to NO2, and partially oxidizes HC. The NO2 then reacts on the catalyst bed with hydrocarbons and partially oxidized HCs and is reduced to N2. The cascade may be essential because the best catalysts for this purpose that we have also convert significant fractions of the NO2 back to NO. As we show, reprocessing the gas may not only be necessary, but may also result in energy savings and increased device reliability.
Technical Paper

Multi-Step Discharge/Catalyst Processing of NOx in Synthetic Diesel Exhaust

2001-09-24
2001-01-3510
In the discharge-catalyst treatment of diesel exhaust the discharge chemistry is known to oxidize NO to NO2 as well as to produce partially oxidized hydrocarbons for the heterogeneous reduction step. We find NO2 to be much more easily reduced to N2 on our catalysts, as long as there is a sufficient supply of reductant present. Unfortunately we typically find that a fraction of the NO2 is only partially reduced back to NO. Since much of the original hydrocarbon survives both the plasma and our catalyst, a subsequent stage of plasma will oxidize NO back to NO2 while at the same time replenishing the supply of partially oxidized hydrocarbon for another stage of heterogeneous catalysis. We present experimental evidence illustrating the advantages of multi-step discharge-catalyst treatment of NOx in simulated diesel exhaust.
Technical Paper

Plasma-Facilitated SCR of NOx in Heavy-Duty Diesel Exhaust

2001-09-24
2001-01-3570
This paper describes two independent studies on γ-alumina as a plasma-activated catalyst. γ-alumina (2.5 - 4.3 wt%) was coated onto the surface of mesoporous silica to determine the importance of aluminum surface coordination on NOx conversion in conjunction with nonthermal plasma. Results indicate that the presence of 5- and 6- fold aluminum coordination sites in γ-alumina could be a significant factor in the NOx reduction process. A second study examined the effect of changing the reducing agent on NOx conversion. Several hydrocarbons were examined including propene, propane, isooctane, methanol, and acetaldehyde. It is demonstrated that methanol was the most effective reducing agent of those tested for a plasma-facilitated reaction over γ-alumina.
Technical Paper

Plasma-Enhanced Catalytic Reduction of NOx in Simulated Lean Exhaust

2000-10-16
2000-01-2961
NOx reduction efficiency in simulated lean exhaust conditions has been examined for three proprietary catalyst materials using a non-thermal plasma discharge as a pretreatment stage to the catalyst. Using propene as the reducing agent for selective catalytic reduction, 74% reduction of NOx has been observed in the presence of 20 ppm SO2. For sulfur-free simulated exhaust, 84% NOx reduction has been obtained. Results show that the impact of sulfur on the samples examined can vary widely from virtually no effect (< 5%) to more than 20% loss in activity depending on the catalyst. Any loss due to sulfur poisoning appears to be irreversible according to limited measurements on poisoned catalysts exposed to sulfur-free exhaust streams. Catalysts were tested over a temperature range of 473-773K, with the highest activity observed at 773K. Examination of this large temperature window has shown that the optimum C1:NOx ratio changes with temperature.
Technical Paper

Lean NOx Reduction in Two Stages: Non-thermal Plasma Followed by Heterogeneous Catalysis

2000-10-16
2000-01-2896
We present data in this paper showing that non-thermal plasma in combination with heterogeneous catalysis is a promising technique for the treatment of NOx in diesel exhaust. Using a commonly available zeolite catalyst, sodium Y, to treat synthetic diesel exhaust we report approximately 50% chemical reduction of NOx over a broad, representative temperature range. We have measured the overall efficiency as a function of the temperature and hydrocarbon concentration. The direct detection of N2 and N2O when the background gas is replaced by helium confirms that true chemical reduction is occurring.
Technical Paper

Comparison of Plasma-Catalyst and Lean NOx Catalyst for Diesel NOx Reduction

2000-10-16
2000-01-2895
Projected NOx and fuel costs are compared for a plasma-catalyst system and an active lean NOx catalyst system. Comparisons are based on modeling of FTP cycle performance. The model uses steady state laboratory device characteristics, combined with measured vehicle exhaust data to predict NOx conversion efficiency and fuel economy penalties. The plasma system uses a proprietary catalyst downstream of a plasma discharge. The active lean NOx catalyst uses a catalyst along with addition of hydrocarbons to the exhaust. For the plasma catalyst system, NOx conversion is available over a wide temperature range. Increased electrical power improves conversion but degrades vehicle fuel economy; 10 J/L energy deposition costs roughly 3% fuel economy. Improved efficiency is also available with larger catalyst size or increased exhaust hydrocarbon content. For the active lean NOx system, NOx conversion is available only in a narrow temperature range.
Technical Paper

NOx Destruction Behavior of Select Materials When Combined with a Non-Thermal Plasma

1999-10-25
1999-01-3640
NOx reduction efficiency under simulated lean burn conditions is examined for a non-thermal plasma in combination with borosilicate glass, alumina, titania, Cu-ZSM-5 and Na-ZSM-5. The non-thermal plasma alone or with a packed bed of borosilicate glass beads converts NO to NO2 and partially oxidizes hydrocarbons. Alumina and Na-ZSM-5 reduce a maximum of 40% and 50% of NOx respectively; however, the energy cost is high for Na- ZSM-5. Cu-ZSM-5 converts less than 20% with a very high energy consumption. The anatase form of titania reduces up to 35% of NOx at a relatively high energy consumption (150J/L) when the catalyst is contained in the plasma region, but does not show any appreciable conversion when placed downstream from the reactor. This phenomenon is explained by photo-activation of anatase in the plasma.
Technical Paper

A Feasibility Evaluation of a Thermal Plasma Fuel Reformer for Supplemental Hydrogen Addition to Internal Combustion Engines

1999-04-26
1999-01-2239
One scenario for reducing engine out NOx in a spark ignition engine is to introduce small amounts of supplemental hydrogen to the combustion process. The supplemental hydrogen enables a gasoline engine to run lean where NOx emissions are significantly reduced and engine efficiency is increased relative to stoichiometric operation. This paper reports on a mass and energy balance model that has been developed to evaluate the overall system efficiencies of a thermal reformer-heat exchanger system capable of delivering hydrogen to the air intake of a gasoline engine. The mass and energy balance model is utilized to evaluate the conditions where energy losses associated with fuel reformation may be offset by increases in engine efficiencies.
X