Refine Your Search

Topic

Author

Search Results

Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

CFD Modeling of Conventional and Pre-Chamber Ignition of a High-Performance Naturally Aspirated Engine

2024-04-09
2024-01-2102
The abatement of carbon dioxide and pollutant emissions on motorbike spark-ignition (SI) engines is a challenging task, considering the small size, the low cost and the high power-to-weight ratio required by the market for such powertrain. In this context, the passive pre-chamber (PPC) technology is an attractive solution. The combustion duration can be reduced by igniting the air-fuel mixture inside a small volume connected to the cylinder, unfolding the way to high engine efficiencies without penalization of the peak performance. Moreover, no injectors are needed inside the PPC, guaranteeing a cheap and fast retrofitting of the existing fleet. In this work, a 3D computational fluid dynamics (CFD) investigation is carried out over an experimental configuration of motorbike SI engine, operated at fixed operating conditions with both traditional and PPC configurations.
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Technical Paper

Numerical and Experimental Investigation on Passive Prechamber Configurations Able to Operate at Low Engine Speed and Load

2023-08-28
2023-24-0031
Turbulent Jet Ignition (TJI) represents one of the most effective solution to improve engine efficiency and to reduce fuel consumption and pollutants emission. Even if active prechambers allow a precise control of the air-fuel ratio close to the spark plug and the ignition of ultra-lean mixtures in the main chamber, passive prechambers represent a more attractive solution especially for passenger cars thanks to their simpler and cheaper configuration, which is easier to integrate into existing engines. The main challenge of passive prechambers is to find a geometry that allows to use TJI in the whole engine map, especially in the low load/speed region, without the use of a second sparkplug in the main chamber. To this end, this works reports a CFD study coupled with an experimental investigation to overcome this limitation.
Technical Paper

3D-CFD Modelling of Gas Exchange and Combustion Inside the Expander of a Recuperated Split-Cycle Engine

2023-08-28
2023-24-0130
The demand of game-changing technologies to improve efficiency and abate emissions of heavy-duty trucks and off-road vehicles promoted the development of novel engine concepts. The Recuperated Split-Cycle (R-SC) engine allows to recover the exhaust gases energy into the air intake by separating the compression and combustion stages into two different but connected cylinders: the compressor and expander, respectively. The result is a potential increase of the engine thermal efficiency. Accordingly, the 3D-computational fluid dynamics (CFD) modelling of the gas exchange process and the combustion evolution inside the expander becomes essential to control and optimize the R-SC engine concept. This work aims to address the most challenging numerical aspects encountered in a 3D numerical simulation of an R-SC engine.
Technical Paper

Towards H2 High-Performance IC Engines: Strategies for Control and Abatement of Pollutant Emissions

2023-08-28
2023-24-0108
In future decarbonized scenarios, hydrogen is widely considered as one of the best alternative fuels for internal combustion engines, allowing to achieve zero CO2 emissions at the tailpipe. However, NOx emissions represent the predominant pollutants and their production has to be controlled. In this work different strategies for the control and abatement of pollutant emissions on a H2-fueled high-performance V8 twin turbo 3.9L IC engine are tested. The characterization of pollutant production on a single-cylinder configuration is carried out by means of the 1D code Gasdyn, considering lean and homogeneous conditions. The NOx are extremely low in lean conditions with respect to the emissions legislation limits, while the maximum mass flow rate remains below the turbocharger technical constraint limit at λ=1 only.
Technical Paper

A Fast and Reliable CFD Approach to Design Hydrogen SI Engines for Industrial Applications

2023-06-26
2023-01-1208
SI engines fueled with hydrogen represent a promising powertrain solution to meet the ambitious target of carbon-free emissions at the tailpipe. Therefore, fast and reliable numerical tools can significantly support the automotive industry in the optimization of such technology. In this work, a 1D-3D methodology is presented to simulate in detail the combustion process with minimal computational effort. First, a 1D analysis of the complete engine cycle is carried out on the user-defined powertrain configuration. The purpose is to achieve reliable boundary conditions for the combustion chamber, based on realistic engine parameters. Then, a 3D simulation of the power-cycle is performed to mimic the combustion process. The flow velocity and turbulence distributions are initialized without the need of simulating the gas exchange process, according to a validated technique.
Technical Paper

Analysis and Optimization of Metallic Based Substrates for After-Treatment System by Means of Full-Scale CFD Simulations and Experiments

2023-04-11
2023-01-0369
The tightening trend of regulations on the levels of admitted pollutant emissions has given a great spur to the research work in the field of combustion and after-treatment devices. Despite the improvements that can be applied to the development of the combustion process, pollutant emissions cannot be reduced to zero; for this reason, the aftertreatment system will become a key component in the path to achieving near-zero emission levels. This study focuses on the numerical analysis and optimization of different metallic substrates, specifically developed for three-way catalyst (TWC) and Diesel oxidation catalyst (DOC) applications, to improve their thermal efficiency by reducing radial thermal losses through the outer mantle. The optimization process relies on computational fluid dynamics (CFD) simulations supported by experimental measurements to validate the numerical models carried out under uncoated conditions, where chemical reactions do not occur.
Journal Article

CFD Assessment of an After-Treatment System Equipped with Electrical Heating for the Reduction of the Catalyst Light-Off Time

2023-04-11
2023-01-0366
The reduction of the catalyst light-off time at the engine cold start represents a key factor for the pollutant emissions control from vehicles tested on homologation cycles and real drive conditions. The adoption of heating strategies to increase the temperature of the catalytic substrate in the early phase of the engine start is regarded as a promising solution. The present study focuses on the application of electrical heated catalyst (EHC) in an after-treatment line for a spark-ignition gasoline engine. The analysis is carried out by means of an advanced CFD framework, which includes the modeling of catalytic reactions in the substrates and accounts for the thermal evolution of all the components included in the after-treatment system.
Technical Paper

3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines

2022-06-14
2022-37-0006
The continuous pursuit of higher combustion efficiencies, as well as the possible usage of synthetic fuels with different properties than fossil-ones, require reliable and low-cost numerical approaches to support and speed-up engines industrial design. In this context, SI engines operated with homogeneous ultra-lean mixtures both characterized by a classical ignition configuration or equipped with an active prechamber represent the most promising solutions. In this work, for the classical ignition arrangement, a 3DCFD strategy to model the impact of the ignition system type on the CCV is developed using the RANS approach for turbulence modelling. The spark-discharge is modelled through a set of Lagrangian particles, whose velocity is modified with a zero-divergence perturbation at each discharge event, then evolved according to the Simplified Langevin Model (SLM) to simulate stochastic interactions with the surrounding gas flow.
Journal Article

A Constant Equivalence Ratio Multi-Zone Approach for a Detailed and Fast Prediction of Performances and Emission in CI Engines

2022-03-29
2022-01-0381
The paper illustrates and validates a novel predictive combustion model for the estimation of performances and pollutant production in CI engines. The numerical methodology was developed by the authors for near real-time applications, while aiming at an accurate description of the air mixing process by means of a multi-zone approach of the air-fuel mass. Charge stratification is estimated via a 2D representation of the fuel spray distribution that is numerically derived by an axial one-dimensional control-volume description of the direct injection. The radial coordinate of each control volume is reconstructed a posteriori by means of a local distribution function. Fuel mass clustered in each zone is further split in ‘liquid’, ‘unburnt’ and ‘burnt’ sub-zones, given the local properties of the fuel spray control volumes with respect to space-time location of modelled ignition delay, liquid length, and flame lift-off.
Technical Paper

Modeling Fuel-Air Mixing, Combustion and Soot Formation with Ducted Fuel Injection Using Tabulated Kinetics

2022-03-29
2022-01-0403
Ducted Fuel Injection (DFI) has the potential to reduce soot emissions in Diesel engines thanks to the enhanced mixing rate resulting from the liquid fuel flow through a small cylindrical pipe located at a certain distance from the nozzle injector hole. A consolidated set of experiments in constant-volume vessel and engine allowed to understand the effects of ambient conditions, duct geometry and shape on fuel-air mixing, combustion and soot formation. However, implementation of this promising technology in compression-ignition engines requires predictive numerical models that can properly support the design of combustion systems in a wide range of operating conditions. This work presents a computational methodology to predict fuel-air mixing and combustion with ducted fuel injection. Attention is mainly focused on turbulence and combustion modelling.
Technical Paper

A 3D-CFD Methodology for Combustion Modeling in Active Prechamber SI Engines Operating with Natural Gas

2022-03-29
2022-01-0470
Active prechamber combustion systems for SI engines represent a feasible and effective solution in reducing fuel consumption and pollutant emissions for both marine and ground heavy-duty engines. However, reliable and low-cost numerical approaches need to be developed to support and speed-up their industrial design considering their geometry complexity and the involved multiple flow length scales. This work presents a CFD methodology based on the RANS approach for the simulation of active prechamber spark-ignition engines. To reduce the computational time, the gas exchange process is computed only in the prechamber region to correctly describe the flow and mixture distributions, while the whole cylinder geometry is considered only for the power-cycle (compression, combustion and expansion). Outside the prechamber the in-cylinder flow field at IVC is estimated from the measured swirl ratio.
Technical Paper

CFD Modeling of Impinging Sprays Under Large Two-Stroke Marine Engine-Like Conditions

2022-03-29
2022-01-0493
To improve the combustion and emission characteristics of the large-bore marine engines, the spray is usually designed as an inter-spray impingement to promote the fuel-air mixing process, which implies frequent droplet collisions. Properly describing the collision dynamics of liquid droplets has been of interest in the field of spray modeling for marine engine applications. In this context, this work attempts to develop an accurate and efficient methodology for modeling impinging sprays under engine-like conditions. Experimental validations in terms of spray penetration and morphology are initially carried out at different operating conditions considering the parametric variations of ambient temperature and pressure, where the measurements are performed on a large-scale constant volume chamber with two symmetrical injectors.
Technical Paper

Modeling the Effects of the Ignition System on the CCV of Ultra-Lean SI Engines using a CFD RANS Approach

2021-09-21
2021-01-1147
Cycle-To-Cycle Variability (CCV) must be properly considered when modeling the ignition process in SI engines operating with ultra-lean mixtures. In this work, a strategy to model the impact of the ignition type on the CCV was developed using the RANS approach for turbulence modelling, performing multi-cycle simulations for the power-cycle only. The spark-discharge was modelled through a set of Lagrangian particles, introduced along the sparkgap and interacting with the surrounding Eulerian gas flow. Then, at each discharge event, the velocity of each particle was modified with a zero-divergence perturbation of the velocity field with respect to average conditions. Finally, the particles velocity was evolved according to the Simplified Langevin Model (SLM), which keeps memory of the initial perturbation and applies a Wiener process to simulate the stochastic interaction of each channel particle with the surrounding gas flow.
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Technical Paper

Cold Flow Simulation of a Dual-Fuel Engine for Diesel-Natural Gas and Diesel-Methanol Fuelling Conditions

2021-04-06
2021-01-0411
In this work, the possibility to perform a cold-flow simulation as a way to improve the accuracy of the starting conditions for a combustion simulation is examined. Specifically, a dual-fuel marine engine running on methanol/diesel and natural gas/diesel fueling conditions is investigated. Dual-fuel engines can provide a short-term solution to cope with the more stringent emission legislations in the maritime sector. Both natural gas and methanol appear to be interesting alternative fuels that can be used as main fuel in these dual-fuel engines. Nevertheless, it is observed that combustion problems occur at part load using these alternative fuels. Therefore, different methods to increase the combustion efficiency at part load are investigated. Numerical simulations prove to be very suitable hereto, as they are an efficient way to study the effect of different parameters on the combustion characteristics.
Journal Article

CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

2021-04-06
2021-01-0409
Computational fluid dynamics (CFD) modeling has many potentials for the design and calibration of modern and future engine concepts, including facilitating the exploration of operation conditions and casting light on the involved physical and chemical phenomena. As more attention is paid to the matching of different fuel types and combustion strategies, the use of detailed chemistry in characterizing auto-ignition, flame stabilization processes and the formation of pollutant emissions is becoming critical, yet computationally intensive. Therefore, there is much interest in using tabulated approaches to account for detailed chemistry with an affordable computational cost. In the present work, the tabulated flamelet progress variable approach (TFPV), based on flamelet assumptions, was investigated and validated by simulating constant-volume Diesel combustion with primary reference fuels - binary mixtures of n-heptane and iso-octane.
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Technical Paper

Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines

2020-04-14
2020-01-0356
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
X