Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Methodology for Modeling the Cat-Heating Transient Phase in a Turbocharged Direct Injection Spark Ignition Engine

2017-09-04
2017-24-0010
This paper presents the modeling of the transient phase of catalyst heating on a high-performance turbocharged spark ignition engine with the aim to accurately predict the exhaust thermal energy available at the catalyst inlet and to provide a “virtual test rig” to assess different design and calibration options. The entire transient phase, starting from the engine cranking until the catalyst warm-up is completed, was taken into account in the simulation, and the model was validated using a wide data-set of experimental tests. The first step of the modeling activity was the combustion analysis during the transient phase: the burn rate was evaluated on the basis of experimental in-cylinder pressure data, considering both cycle-to-cycle and cylinder-to-cylinder variations.
Journal Article

Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine

2017-09-04
2017-24-0021
One of the key technologies for the improvement of the diesel engine thermal efficiency is the reduction of the engine heat transfer through the thermal insulation of the combustion chamber. This paper presents a numerical investigation on the effects of the combustion chamber insulation on the heat transfer, thermal efficiency and exhaust temperatures of a 1.6 l passenger car, turbo-charged diesel engine. First, the complete insulation of the engine components, like pistons, liner, firedeck and valves, has been simulated. This analysis has showed that the piston is the component with the greatest potential for the in-cylinder heat transfer reduction and for Brake Specific Fuel Consumption (BSFC) reduction, followed by firedeck, liner and valves. Afterwards, the study has been focused on the impact of different piston Thermal Barrier Coatings (TBCs) on heat transfer, performance and wall temperatures.
Journal Article

Development of a K-k-∊ Phenomenological Model to Predict In-Cylinder Turbulence

2017-03-28
2017-01-0542
The turbulent flow field inside the cylinder plays a major role in spark ignition (SI) engines. Multiple phenomena that occur during the high pressure part of the engine cycle, such as early flame kernel development, flame propagation and gas-to-wall heat transfer, are influenced by in-cylinder turbulence. Turbulence inside the cylinder is primarily generated via high shear flows that occur during the intake process, via high velocity injection sprays and by the destruction of macro-scale motions produced by tumbling and/or swirling structures close to top dead center (TDC) . Understanding such complex flow phenomena typically requires detailed 3D-CFD simulations. Such calculations are computationally very expensive and are typically carried out for a limited number of operating conditions. On the other hand, quasi-dimensional simulations, which provide a limited description of the in-cylinder processes, are computationally inexpensive.
Technical Paper

Numerical Simulation of the Warm-Up of a Passenger Car Diesel Engine Equipped with an Advanced Cooling System

2016-04-05
2016-01-0555
The target for future cooling systems is to control the fluid temperatures and flows through a demand oriented control of the engine cooling to minimize energy demand and to achieve comfort, emissions, or service life advantages. The scope of this work is to create a complete engine thermal model (including both cooling and lubrication circuits) able to reproduce engine warm up along the New European Driving Cycle in order to assess the impact of different thermal management concepts on fuel consumption. The engine cylinder structure was modeled through a finite element representation of cylinder liner, piston and head in order to simulate the cylinder heat exchange to coolant or oil flow circuits and to predict heat distribution during transient conditions. Heat exchanges with other components (EGR cooler, turbo cooler, oil cooler) were also taken into account.
X