Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Performance and Emission Comparison between a Conventional Euro VI Diesel Engine and an Optimized PCCI Version and Effect of EGR Cooler Fouling on PCCI Combustion

Premixed charge compression ignition (PCCI) is an advanced combustion mode that has the aim of simultaneously reducing particulate matter and nitrogen oxide exhaust emissions, compared with conventional diesel combustion, thanks to a partially premixed charge and low temperature combustion. In this work, PCCI combustion has been implemented by means of an early single-injection strategy and large amounts of recirculated exhaust gas. Starting from a commercial Euro VI on-road engine, the engine hardware has been modified to optimize PCCI operations. This has involved adopting a smaller turbo group, a new combustion chamber and injectors, and a dedicated high-pressure exhaust gas recirculation system. The results, in terms of engine performance and exhaust emissions, under steady-state operation conditions, are presented in this work, where the original Euro VI calibration of the conventional engine has been compared with the PCCI calibration of the optimized hardware engine.
Technical Paper

Zero Dimensional Models for EGR Mass-Rate and EGR Unbalance Estimation in Diesel Engines

A precise estimation of the recirculated exhaust gas rate and oxygen concentration as well as a predictive evaluation of the possible EGR unbalance among cylinders are of paramount importance, especially if non-conventional combustion modes, which require high EGR flow-rates, are implemented. In the present paper, starting from the equation related to convergent nozzles, the EGR mass flow-rate is modeled considering the pressure and the temperature upstream of the EGR control valve, as well as the pressure downstream of it. The restricted flow-area at the valve-seat passage and the discharge coefficient are carefully assessed as functions of the valve lift. Other models were fitted using parameters describing the engine working conditions as inputs, following a semi-physical and a purely statistical approach. The resulting models are then applied to estimate EGR rates to both conventional and non-conventional combustion conditions.
Journal Article

Model-Based Control of BMEP and NOx Emissions in a Euro VI 3.0L Diesel Engine

A model-based approach to control BMEP (Brake Mean Effective Pressure) and NOx emissions has been developed and assessed on a FPT F1C 3.0L Euro VI diesel engine for heavy-duty applications. The controller is based on a zero-dimensional real-time combustion model, which is capable of simulating the HRR (heat release rate), in-cylinder pressure, BMEP and NOx engine-out levels. The real-time combustion model has been realized by integrating and improving previously developed simulation tools. A new discretization scheme has been developed for the model equations, in order to reduce the accuracy loss when the computational step is increased. This has allowed the required computational time to be reduced to a great extent.
Journal Article

Steady-State and Transient Operations of a Euro VI 3.0L HD Diesel Engine with Innovative Model-Based and Pressure-Based Combustion Control Techniques

In the present work, different combustion control strategies have been experimentally tested in a heavy-duty 3.0 L Euro VI diesel engine. In particular, closed-loop pressure-based and open-loop model-based techniques, able to perform a real-time control of the center of combustion (MFB50), have been compared with the standard map-based engine calibration in order to highlight their potentialities. In the pressure-based technique, the instantaneous measurement of in-cylinder pressure signal is performed by a pressure transducer, from which the MFB50 can be directly calculated and the start of the injection of the main pulse (SOImain) is set in a closed-loop control to reach the MFB50 target, while the model-based approach exploits a heat release rate predictive model to estimate the MFB50 value and sets the corresponding SOImain in an open-loop control. The experimental campaign involved both steady-state and transient tests.