Refine Your Search

Topic

Author

Search Results

Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Artificial Neural Network for Airborne Noise Prediction of a Diesel Engine

2024-06-12
2024-01-2929
The engine acoustic character has always represented the product DNA, owing to its strong correlation with in-cylinder pressure gradient, components design and perceived quality. Best practice for engine acoustic characterization requires the employment of a hemi-anechoic chamber, a significant number of sensors and special acoustic insulation for engine ancillaries and transmission. This process is highly demanding in terms of cost and time due to multiple engine working points to be tested and consequent data post-processing. Since Neural Networks potentially predicting capabilities are apparently un-exploited in this research field, the following paper provides a tool able to acoustically estimate engine performance, processing system inputs (e.g. Injected Fuel, Rail Pressure) thanks to the employment of Multi Layer Perceptron (MLP, a feed forward Network working in stationary points).
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Enhancing Ducted Fuel Injection Simulations: Assessment of RANS Turbulence Models Using LES Data

2024-04-09
2024-01-2689
Compression ignition engine-based transportation is nowadays looking for cleaner combustion solutions. Among them, ducted fuel injection (DFI) is emerging as a cutting-edge technology due to its potential to drastically curtail engine-out soot emissions. Although the DFI capability to abate soot formation has been demonstrated both in constant-volume and optical engine conditions, its optimization and understanding is still needed for its exploitation on series production engines. For this purpose, computational fluid dynamics (CFD) coupled with low-cost turbulence models, like RANS, can be a powerful tool, especially in the industrial context. However, it is often challenging to obtain reliable RANS-based CFD simulations, especially due to the high dependence of the various state-of-the-art turbulence models on the case study.
Technical Paper

Electrification and control of a 1:5 scale vehicle for automotive testing methodologies

2024-04-09
2024-01-2271
The design and testing of innovative components and control logics for future vehicular platform represents a challenging task in the automotive field. The use of scale model vehicles constitutes an interesting alternative for testing assessment by decreasing time and cost efforts with a potential benefit in terms of safety. The target of this research work is the development of a customized scale vehicle platform for verifying and validating innovative control strategies in safe conditions and with cost reduction. Consequently, the electrification of a radio-controlled 1:5 scale vehicle is carried out and a customized remote real-time controller is installed onboard. One of the main features of this commercial product is its modular characteristics that allows the modification of some component properties, such as the viscous coefficient of the shock absorbers, the stiffness of the springs and the suspension geometry.
Technical Paper

Improving the Feasibility of Electrified Heavy-Duty Truck Fleets with Dynamic Wireless Power Transfer

2023-08-28
2023-24-0161
This study assesses the capabilities of dynamic wireless power transfer with respect to range extension and payload capacity of heavy-duty trucks. Currently, a strong push towards tailpipe CO2 emissions abatement in the heavy-duty transport sector by policymakers is driving the development of battery electric trucks. Yet, battery-electric heavy-duty trucks require large battery packs which may reduce the payload capacity and increase dwell time at charging stations, negatively affecting their acceptance among fleet operators. By investigating various levels of development of wireless charging technology and exploring various deployment scenarios for an electrified highway lane, the potential for a more efficient and environmentally friendly battery sizing was explored.
Technical Paper

Real Time Modelling of Automotive Electric Drives for Hardware-in-the-Loop Applications

2023-08-28
2023-24-0028
The current electrification trend involving hybrid and electric vehicles requires accurate tools to evaluate performance and reliability of electric powertrains’ control systems. Thanks to Hardware in the Loop (HiL) technique, verification, validation and virtual calibration of Electronic Control Systems can be performed without physical plants, addressing the need of frontloading, cost and time reduction of new vehicles control systems development. However, HiL applications with power electronics controllers brings several concerns due to the extremely low timestep needed for accurate simulation of electromagnetic phenomena, making FPGA-based simulation the only option. Moreover, thermal aspects of electric motors are very important from the control perspective as complex thermal management control strategies are implemented to improve the efficiency and to prevent overheating that can cause permanent damage to the electrical machine.
Technical Paper

LCA and LCC of a Li-ion Battery Pack for Automotive Application

2023-08-28
2023-24-0170
Lithium Ion (Li-ion) batteries have emerged as the dominant technology for electric mobility due to their performance, stability, and long cycle life. Nevertheless, there are emerging environmental and economic issues from Li-ion batteries related to depleting critical resources and their potential shortage. This paper focuses on developing the Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) of a generic Li-ion battery pack with a Nickel-Manganese-Cobalt (NMC) cathode chemistry, being the most used, and a capacity of 95 kWh as an average between different carmakers. The LCA and LCC include all the relevant phases of the life cycle of the product. The costs related to the LCC assessment have been taken as secondary data. Lastly, the same system boundary has been chosen both for the LCA and LCC.
Technical Paper

PSD Profiles for Dynamic and Durability Tests of Military Off-Road Vehicle Racks

2023-04-11
2023-01-0107
In a military off-road vehicle, generally designed to operate in an aggressive operating environment, the typical comfort requirements for trucks and passenger cars are revised for robustness, safety and security. An example is the cabin space optimisation to provide easy access to many types of equipment required on-board. In this field, racks hung to the cabin chassis are generally used to support several electronic systems, like radios. The dynamic loads on a rack can reach high values in the operative conditions of a military vehicle. Rack failures should be prevented for the safety of driver, crew and load and the successful execution of a mission. Therefore, dynamic and durability tests of these components, including the fixtures to the vehicle, are required.
Journal Article

CFD Simulation and Modelling of a Battery Thermal Management System: Comparison between Indirect and Immersion Cooling

2023-04-11
2023-01-0514
Battery Electric Vehicles (BEVs) and Hybrid Electric Vehicles (HEVs) are becoming relevant in the transportation sector, and it is therefore of utmost importance to find a solution to allow batteries to work safely and in a correct temperature range in which performance degradation and/or thermal runaway do not occur. For this purpose, a Battery Thermal Management System (BTMS) is required to ensure the correct operation of the battery pack. The design and control of an efficient BTMS is a complex task, in which multiple technical fields are involved. The paper mainly focuses on the thermal problems affecting the BTMS and sets two main goals: 1) to provide a comparison of two possible BTMS solutions, analyzing constraints and thermal performance for the design task; 2) to present a battery thermal 1D model able to describe the battery module behavior in real-time application to be implemented in a BMS control.
Book

Injection Technologies and Mixture Formation Strategies For Spark-Ignition and Dual-Fuel Engines

2022-06-24
Fuel injection systems and performance is fundamental to combustion engine performance in terms of power, noise, efficiency, and exhaust emissions. There is a move toward electric vehicles (EVs) to reduce carbon emissions, but this is unlikely to be a rapid transition, in part due to EV batteries: their size, cost, longevity, and charging capabilities as well as the scarcity of materials to produce them. Until these issues are resolved, refining the spark-ignited engine is necessary to address both sustainability and demand for affordable and reliable mobility. Even under policies oriented to smart sustainable mobility, spark-ignited engines remain strategic, because they can be applied to hybridized EVs or can be fueled with gasoline blended with bioethanol or bio-butanol to drastically reduce particulate matter emissions of direct injection engines in addition to lower CO2 emissions.
Technical Paper

Development of a High-Voltage Battery Pack Thermal Model at Vehicle Level for Plug-in Hybrid Applications

2022-06-14
2022-37-0023
The ongoing global demand for greater energy efficiency plays an essential role in the automotive industry, as the focus is moving from ICEs to hybrid (HEVs) and electric (EVs) vehicles. New virtual methodologies are necessary to reduce the development effort of these technologies. In this context, the thermal management of the vehicle high voltage battery pack is becoming increasingly important, with significant impact on the vehicle’s range in different environmental scenarios. In this paper, an advanced method is proposed to compute 3D temperature distribution of the cells of a high voltage battery pack for Plug-in Hybrid (PHEV) or full electric (EV) applications. The thermal FE model of a complete PHEV vehicle was integrated with an electrical NTG equivalent circuit model of the HV battery to compute the heat loads of the cells.
Journal Article

Calibrating a Real-time Energy Management for a Heavy-Duty Fuel Cell Electrified Truck towards Improved Hydrogen Economy

2022-06-14
2022-37-0014
Fuel cell electrified powertrains are currently a promising technology towards decarbonizing the heavy-duty transportation sector. In this context, extensive research is required to thoroughly assess the hydrogen economy potential of fuel cell heavy-duty electrification. This paper proposes a real-time capable energy management strategy (EMS) that can achieve improved hydrogen economy for a fuel cell electrified heavy-duty truck. The considered heavy-duty truck is modelled first in Simulink® environment. A baseline heuristic map-based controller is then retained that can instantaneously control the electrical power split between fuel cell system and the high-voltage battery pack of the heavy-duty truck. Particle swarm optimization (PSO) is consequently implemented to optimally tune the parameters of the considered EMS.
Technical Paper

Methodology and Application on Load Monitoring Using Strain-Gauged Bolts in Brake Calipers

2022-03-29
2022-01-0922
As technology evolves, the number of sensors and available data on vehicles grow exponentially. In this context, it is essential to use sensors for monitoring key components, increasing safety and reliability, and gathering data useful for mechanical dimensioning and control systems. This paper presents an application of strain-gauged bolts on brake calipers fixation of two electric vehicles. With this approach it was possible to evaluate the loads applied to the brake pads fixation zone and correlate them with braking behavior, therefore gaining insights on braking conditions and system state for an improved braking function control. The goal of the study is analyzing the strengths and limitations of the method and proposing developments to deploy it in real applications. This is particularly important and novel for electric vehicles, where powertrains can create positive/negative torques and generate complex interactions with braking system.
Technical Paper

Adaptive Real-Time Energy Management of a Multi-Mode Hybrid Electric Powertrain

2022-03-29
2022-01-0676
Meticulous design of the energy management control algorithm is required to exploit all fuel-saving potentials of a hybrid electric vehicle. Equivalent consumption minimization strategy is a well-known representative of on-line strategies that can give near-optimal solutions without knowing the future driving tasks. In this context, this paper aims to propose an adaptive real-time equivalent consumption minimization strategy for a multi-mode hybrid electric powertrain. With the help of road recognition and vehicle speed prediction techniques, future driving conditions can be predicted over a certain horizon. Based on the predicted power demand, the optimal equivalence factor is calculated in advance by using bisection method and implemented for the upcoming driving period. In such a way, the equivalence factor is updated periodically to achieve charge sustaining operation and optimality.
Technical Paper

Effect of Temperature Distribution on the Predicted Cell Lifetimes for a Plug-In Hybrid Electric Vehicle Battery Pack

2022-03-29
2022-01-0712
Monitoring and preserving state-of-health of high-voltage battery packs in electrified road vehicles currently represents an open and growing research topic. When predicting high-voltage battery lifetime, most current literature assumes a uniform temperature distribution among the different cells of the pack. Nevertheless, temperature has been demonstrated having a key impact on cell lifetime, and different cells of the same battery pack typically exhibit different temperature profiles over time, e.g. due to their position within the pack. Following these considerations, this paper aims at assessing the effect of temperature distribution on the predicted lifetime of cells belonging to the same battery pack. To this end, a throughput-based numerical cell ageing model is firstly selected due to its reasonable compromise between accuracy and computational efficiency.
Technical Paper

Aerodynamic Optimization Using Add-On Devices: Comparison Between CFD and Wind Tunnel Experimental Test

2022-03-29
2022-01-0885
JUNO is an urban concept vehicle (developed at the Politecnico of Torino), equipped by an ethanol combustion engine, designed to obtain low consumptions and reduced environmental impact. For these goals the main requirements that were considered during the designing process were mass reduction and aerodynamic optimization, at first on the shape of the car body and then, thanks to add-on devices. JUNO’s aerodynamic development follows a defined workflow: geometry definition and modelling, CFD simulations and analysis, and finally geometry changes and CFD new verification. In this paper the results of the CFD simulations (using STARCCM+ and RANS k-ε) with a corresponding 1/1 scale wind tunnel tests made using the real vehicle. Particularly, the results in term of: total drag coefficient (Cx), total lift coefficient (Cz), the total pressure in the side and rear analyzing twenty different aerodynamics configurations made up of different combination of some aerodynamics add-on devices.
Technical Paper

Identifying Critical Use Cases for a Plug-in Hybrid Electric Vehicle Battery Pack from Thermal and Ageing Perspectives

2021-09-21
2021-01-1251
The current trend towards an increasing electrification of road vehicles brings to life a whole series of unprecedent design issues. Among these, the ageing process that affects the lifetime of lithium-ion based energy storage systems is of particular importance since it turns out to be extremely sensitive to the variation of battery operating conditions normally occurring especially in hybrid electric vehicles (HEVs). This paper aims at analyzing the impact of operating conditions on the predicted lifetime of a parallel-through-the-road plug-in HEV battery both from thermal and ageing perspectives. The retained HEV powertrain architecture is presented first and modeled, and the related energy management system is implemented. Dedicated numerical models are also discussed for the high-voltage battery pack that allow predicting its thermal behavior and cyclic ageing.
Technical Paper

Development of a Fully Physical Vehicle Model for Off-Line Powertrain Optimization: A Virtual Approach to Engine Calibration

2021-09-05
2021-24-0004
Nowadays control system development in the automotive industry is evolving rapidly due to several factors. On the one hand legislation tightening is asking for simultaneous emission reduction and efficiency increase, on the other hand the complexity of the powertrain is increasing due to the spreading of electrification. Those factors are pushing for strong design parallelization and frontloading, thus requiring engine calibration to be moved much earlier in the V-Cycle. In this context, this paper shows how, coupling well known physical 1D engine models featuring predictive combustion and emission models with a fully physical aftertreatment system model and longitudinal vehicle model, a powerful virtual test rig can be built. This virtual test rig can be used for powertrain virtual calibration activities with reduced requirement in terms of experimental data.
Journal Article

Design and Modelling of the Powertrain of a Hybrid Fuel Cell Electric Vehicle

2021-04-06
2021-01-0734
This paper presents a Fuel Cell Electric Vehicle (FCEV) powertrain development and optimization, aiming to minimize hydrogen consumption. The vehicle is a prototype that run at the Shell Eco-marathon race and its powertrain is composed by a PEM fuel cell, supercapacitors and a DC electric motor. The supercapacitors serve as an energy buffer to satisfy the load peaks requested by the electric motor, allowing a smoother (and closer to a stationary application) working condition for the fuel cell. Thus, the fuel cell can achieve higher efficiency rates and the fuel consumption is minimized. Several models of the powertrain were developed using MATLAB-Simulink and then experimentally validated in laboratory and on the track. The proposed models allow to evaluate two main arrangements between fuel cell and supercapacitors: 1) through a DC/DC converter that sets the FC current to a desired value; 2) using a direct parallel connection between fuel cell and supercapacitors.
X