Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

A numerical Methodology for Induction Motor Control: Lookup Tables Generation and Steady-State Performance Analysis

2024-04-09
2024-01-2152
This paper presents a numerical methodology to generate lookup tables that provide d- and q-axis stator current references for the control of electric motors. The main novelty with respect to other literature references is the introduction of the iron power losses in the equivalent-circuit electric motor model implemented in the optimization routine. The lookup tables generation algorithm discretizes the motor operating domain and, given proper constraints on maximum stator current and magnetic flux, solves a numerical optimization problem for each possible operating point to determine the combination of d- and q- axis stator currents that minimizes the imposed objective function while generating the desired torque. To demonstrate the versatility of the proposed approach, two different variants of this numerical interpretation of the motor control problem are proposed: Maximum Torque Per Ampere and Minimum Electromagnetic Power Loss.
Technical Paper

3DOF Vehicle Dynamics Model for Fuel Consumption Estimation

2024-04-09
2024-01-2757
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track.
Technical Paper

A Numerical Analysis of Terrain and Vehicle Characteristics in Off-Road Conditions through Semi-Empirical Tire Contact Modelling

2024-04-09
2024-01-2297
In the last decades, the locomotion of wheeled and tracked vehicles on soft soils has been widely investigated due to the large interest in planetary, agricultural, and military applications. The development of a tire-soft soil contact model which accurately represents the micro and macro-scale interactions plays a crucial role for the performance assessment in off-road conditions since vehicle traction and handling are strongly influenced by the soil characteristics. In this framework, the analysis of realistic operative conditions turns out to be a challenging research target. In this research work, a semi-empirical model describing the interaction between a tire and homogeneous and fine-grained soils is developed in Matlab/Simulink. The stress distribution and the resulting forces at the contact patch are based on well-known terramechanics theories, such as pressure-sinkage Bekker’s approach and Mohr-Coulomb’s failure criterion.
Technical Paper

Real Time Modelling of Automotive Electric Drives for Hardware-in-the-Loop Applications

2023-08-28
2023-24-0028
The current electrification trend involving hybrid and electric vehicles requires accurate tools to evaluate performance and reliability of electric powertrains’ control systems. Thanks to Hardware in the Loop (HiL) technique, verification, validation and virtual calibration of Electronic Control Systems can be performed without physical plants, addressing the need of frontloading, cost and time reduction of new vehicles control systems development. However, HiL applications with power electronics controllers brings several concerns due to the extremely low timestep needed for accurate simulation of electromagnetic phenomena, making FPGA-based simulation the only option. Moreover, thermal aspects of electric motors are very important from the control perspective as complex thermal management control strategies are implemented to improve the efficiency and to prevent overheating that can cause permanent damage to the electrical machine.
Technical Paper

Comprehensive Design Methodology of a Vehicle Monocoque: From Vehicle Dynamics to Manufacturing

2023-04-11
2023-01-0600
Climate change has become a real problem in our world. Society is trying to contain it as much as possible, promoting more sustainable behaviors and limiting pollution. For the automotive industry, this leads to progressive electrification and reduction of tailpipe emissions and fuel consumption for conventional vehicles. In this framework, this paper presents the design of a vehicle to compete in the Urban Concept category of Shell Eco Marathon, a competition among universities that has the goal to release a vehicle with the lowest possible fuel consumption. This work describes the monocoque design phases of the vehicle JUNO. The complete design approach is described, through the analysis of the decisional workflow adopted to integrate every technical solution from the aerodynamic constraints to the structural ones passing from the vehicle dynamic requirements.
Technical Paper

Light Commercial Vehicle ADAS-Oriented Modelling: An Optimization-Based Conversion Tool from Multibody to Real-Time Vehicle Dynamics Model

2023-04-11
2023-01-0908
In the last few years, the number of Advanced Driver Assistance Systems (ADAS) on road vehicles has been increased with the aim of dramatically reducing road accidents. Therefore, the OEMs need to integrate and test these systems, to comply with the safety regulations. To lower the development cost, instead of experimental testing, many virtual simulation scenarios need to be tested for ADAS validation. The classic multibody vehicle approach, normally used to design and optimize vehicle dynamics performance, is not always suitable to cope with these new tasks; therefore, real-time lumped-parameter vehicle models implementation becomes more and more necessary. This paper aims at providing a methodology to convert experimentally validated light commercial vehicles (LCV) multibody models (MBM) into real-time lumped-parameter models (RTM).
Technical Paper

Optimal Torque-Vectoring Control Strategy for Energy Efficiency and Vehicle Dynamic Improvement of Battery Electric Vehicles with Multiple Motors

2023-04-11
2023-01-0563
Electric vehicles comprising multiple motors allow the individual wheel torque allocation, i.e. torque-vectoring. Powertrain configurations with multiple motors provide additional degree of freedom to improve system level efficiencies while ensuring handling performances and active safety. However, most of the works available on this topic do not simultaneously optimize both vehicle dynamic performance and energy efficiency while considering the real-time implementability of the controller. In this work, a new and systematic approach in designing, modeling, and simulating the main layers of a torque-vectoring control framework is introduced. The high level control combines the actions of an adaptive Linear Quadratic Regulator (A-LQR) and of a feedforward controller, to shape the steady-state and transient vehicle response by generating the reference yaw moment. A novel energy efficient torque allocation method is proposed as a low level controller.
Technical Paper

Pre-Design and Feasibility Analysis of a Magneto-Rheological Braking System for Electric Vehicles

2023-04-11
2023-01-0888
Magneto-Rheological (MR) Fluid started to be used for industrial applications in the last 20 years, and, from that moment on, innovative uses have been evaluated for different applications to exploit its characteristic of changing yield stress as a function of the magnetic field applied. Because of the complexity of the behavior of the MR fluid, it is necessary to perform lots of simulations, combining multi-physical software capable of evaluating all the material’s characteristics. The paper proposes a strategy capable of quickly verifying the feasibility of an innovative MR system, considering a sufficient accuracy of the approximation, able to easily verify the principal criticalities of the innovative applications concerning the MR fluid main electromagnetic and fluid-dynamic capabilities.
Technical Paper

Development of a High-Voltage Battery Pack Thermal Model at Vehicle Level for Plug-in Hybrid Applications

2022-06-14
2022-37-0023
The ongoing global demand for greater energy efficiency plays an essential role in the automotive industry, as the focus is moving from ICEs to hybrid (HEVs) and electric (EVs) vehicles. New virtual methodologies are necessary to reduce the development effort of these technologies. In this context, the thermal management of the vehicle high voltage battery pack is becoming increasingly important, with significant impact on the vehicle’s range in different environmental scenarios. In this paper, an advanced method is proposed to compute 3D temperature distribution of the cells of a high voltage battery pack for Plug-in Hybrid (PHEV) or full electric (EV) applications. The thermal FE model of a complete PHEV vehicle was integrated with an electrical NTG equivalent circuit model of the HV battery to compute the heat loads of the cells.
Journal Article

Lightweight Components Manufactured with In-Production Composite Scraps: Mechanical Properties and Application Perspectives

2022-06-14
2022-37-0027
In the last years, the design in the automotive sector is mainly led by emission reduction and circular economy. To satisfy the first perspective, composites materials are being increasingly used to produce lightweight structural and semi-structural components. However, the automotive mass production arises the problem of the end-of-life disposal of the vehicle and the reduction of the wastes environmental impact. The circular economy of the composite materials has therefore become a challenge of primary importance for car manufacturers and tier 1 suppliers. It is necessary to pursue a different economic model, combining traditional raw materials with the intensive use of materials from recycling processes. New technologies are being studied and developed concerning the reuse of in-line production scraps with out-of-autoclave process that makes them desirable for high production rate applications.
Journal Article

Calibrating a Real-time Energy Management for a Heavy-Duty Fuel Cell Electrified Truck towards Improved Hydrogen Economy

2022-06-14
2022-37-0014
Fuel cell electrified powertrains are currently a promising technology towards decarbonizing the heavy-duty transportation sector. In this context, extensive research is required to thoroughly assess the hydrogen economy potential of fuel cell heavy-duty electrification. This paper proposes a real-time capable energy management strategy (EMS) that can achieve improved hydrogen economy for a fuel cell electrified heavy-duty truck. The considered heavy-duty truck is modelled first in Simulink® environment. A baseline heuristic map-based controller is then retained that can instantaneously control the electrical power split between fuel cell system and the high-voltage battery pack of the heavy-duty truck. Particle swarm optimization (PSO) is consequently implemented to optimally tune the parameters of the considered EMS.
Technical Paper

A Computationally Lightweight Dynamic Programming Formulation for Hybrid Electric Vehicles

2022-03-29
2022-01-0671
Predicting the fuel economy capability of hybrid electric vehicle (HEV) powertrains by solving the related optimal control problem has been available for a few decades. Dynamic programming (DP) is one of the most popular techniques implemented to this end. Current research aims at integrating further powertrain modeling criteria that improve the fidelity level of the optimal HEV powertrain control behavior predicted by DP, thus corroborating the reliability of the fuel economy assessment. Dedicated methodologies need further development to avoid the curse of dimensionality which is typically associated to DP when increasing the number of control and state variables considered. This paper aims at considerably reducing the overall computational effort required by DP for HEVs by removing the state term associated to the battery state-of-charge (SOC).
Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Technical Paper

Experimental and Numerical Investigation of a Passive Pre-Chamber Jet Ignition Single-Cylinder Engine

2021-09-05
2021-24-0010
In the framework of an increasing demand for a more sustainable mobility, where the fuel consumption reduction is a key driver for the development of innovative internal combustion engines, Turbulent Jet Ignition (TJI) represents one of the most promising solutions to improve the thermal efficiency. However, details concerning turbulent jet assisted combustion are still to be fully captured, and therefore the design and the calibration of efficient TJI systems require the support of reliable simulation tools that can provide additional information not accessible through experiments. To this aim, an experimental investigation combined with a 3D-CFD study was performed to analyze the TJI combustion characteristics in a single-cylinder spark-ignition (SI) engine. Firstly, the model was validated against experiments considering stoichiometric mixture at 3000 rpm, wide open throttle operating conditions.
Technical Paper

Development of a Fully Physical Vehicle Model for Off-Line Powertrain Optimization: A Virtual Approach to Engine Calibration

2021-09-05
2021-24-0004
Nowadays control system development in the automotive industry is evolving rapidly due to several factors. On the one hand legislation tightening is asking for simultaneous emission reduction and efficiency increase, on the other hand the complexity of the powertrain is increasing due to the spreading of electrification. Those factors are pushing for strong design parallelization and frontloading, thus requiring engine calibration to be moved much earlier in the V-Cycle. In this context, this paper shows how, coupling well known physical 1D engine models featuring predictive combustion and emission models with a fully physical aftertreatment system model and longitudinal vehicle model, a powerful virtual test rig can be built. This virtual test rig can be used for powertrain virtual calibration activities with reduced requirement in terms of experimental data.
Technical Paper

On the Road Profile Estimation from Vehicle Dynamics Measurements

2021-08-31
2021-01-1115
Ride comfort assessment is undoubtedly related to the interaction between the vehicle tires and the road surface. Indeed, the road profile represents the typical input for tire vertical load estimation in durability analysis and for active/semi-active suspension controller design. However, the road profile evaluation through direct experimental measurements involves long test time and excessive cost required by professional instrumentations to detect the road irregularities with sufficient accuracy. An alternative is shifting attention towards efficient and robust algorithms for indirect road profile evaluation. The object of this work aims at providing road profile estimation starting from vehicle dynamics measurements, through accessible and traditional sensors, with the application of a linear Kalman filter algorithm.
Technical Paper

A Methodology for Parameter Estimation of Nonlinear Single Track Models from Multibody Full Vehicle Simulation

2021-04-06
2021-01-0336
In vehicle dynamics, simple and fast vehicle models are required, especially in the framework of real-time simulations and autonomous driving software. Therefore, a trade-off between accuracy and simulation speed must be pursued by selecting the appropriate level of detail and the corresponding simplifying assumptions based on the specific purpose of the simulation. The aim of this study is to develop a methodology for map and parameter estimation from multibody simulation results, to be used for simplified vehicle modelling focused on handling performance. In this paper, maneuvers, algorithms and results of the parameter estimation are reported, together with their integration in single track models with increasing complexity and fidelity. The agreement between the multibody model, used as reference, and four single track models is analyzed and discussed through the evaluation of the correlation index.
Journal Article

Artificial Intelligence for Damage Detection in Automotive Composite Parts: A Use Case

2021-04-06
2021-01-0366
The detection and evaluation of damage in composite materials components is one of the main concerns for automotive engineers. It is acknowledged that defects appeared in the manufacturing stage or due to the impact and/or fatigue loads can develop along the vehicle riding. To avoid an unexpected failure of structural components, engineers ask for cheap methodologies assessing the health state of composite parts by means of continuous monitoring. Non Destructive Technique (NDT) for the damage assessment of composite structures are nowadays common and accurate, but an on-line monitoring requires properties as low cost, small size and low power that do not belong to common NDT. The presence of a damage in composite materials, either due to fatigue cycling or low-energy impact, leads to progressive degradation of elastic moduli and strengths.
X