Refine Your Search

Topic

Author

Search Results

Technical Paper

Efficient engine encapsulation strategy using poroelastic finite element simulation

2024-06-12
2024-01-2957
With the increasing importance of electrified powertrains, electric motors and gear boxes become an important NVH source especially regarding whining noises in the high frequency range. Engine encapsulation noise treatments become often necessary and present some implementation, modeling as well as optimization issues due to complex environments with contact uncertainties, pass-throughs and critical uncovered areas. Relying purely on mass spring systems is often a too massive and relatively unefficient solution whenever the uncovered areas are dominant. Coverage is key and often a combination of hybrid backfoamed porous stiff shells with integral foams for highly complex shapes offer an optimized trade-off between acoustic performance, weight and costs.
Technical Paper

Advance simulation method for aero-acoustic vehicle design

2024-06-12
2024-01-2938
With the electrification of powertrains, the noise level inside vehicles reach high levels of silence. The dominant engine noise found in traditional vehicles is now replaced by other sources of noise such as rolling noise and aeroacoustic noise. These noises are encountered during driving on roads and highways and can cause significant fatigue during long journeys. Regarding aeroacoustic phenomena, the noise transmitted into the cabin is the result of both turbulent pressure and acoustic pressure created by the airflow. Even though it is lower in level, the acoustic pressure induces most of the noise perceived by the occupants. Its wavelength is closer to the characteristic vibration wavelengths of the glass, making its propagation more efficient through the vehicle's windows. The accurate modeling of these phenomena requires the coupling of high-frequency computational fluid dynamics (CFD) simulations and vibro-acoustic simulations.
Technical Paper

Validation of Eulerian-Lagrangian Spray Atomization Modeling against Gasoline Fuel

2021-02-24
2021-01-5027
Combustion in any engine starts with the injection of fuel into the combustion chamber. Atomization of fuel and its mixing plays a vital role in determining the suitable air-fuel (A/F) ratio. Appropriate A/F ratio determines the amount of energy release and pollutant formation for standard engines. Thus an accurate prediction of these processes is required to perform reliable combustion and pollutant formation simulations. In this study, the Eulerian-Lagrangian Spray Atomization (ELSA) model is implemented as a Computational Fluid Dynamics (CFD) tool for the prediction of spray behavior. Past studies performed on diesel fuel suggest good agreement between experiment and simulation indicating the model’s capability. The study aims to validate the ELSA model for gasoline fuel against the test results obtained from Renault and against the pure Lagrangian spray model. The simulations have been performed using CONVERGE CFD v2.4.18.
Technical Paper

Inter-Laboratory Characterization of Biot Parameters of Poro-Elastic Materials for Automotive Applications

2020-09-30
2020-01-1523
Automotive suppliers provide multi-layer trims mainly made of porous materials. They have a real expertise on the characterization and the modeling of poro-elastic materials. A dozen parameters are used to characterize the acoustical and elastical behavior of such materials. The recent vibro-acoustic simulation tools enable to take into account this type of material but require the Biot parameters as input. Several characterization methods exist and the question of reproducibility and confidence in the parameters arises. A Round Robin test was conducted on three poro-elastic material with four laboratories. Compared to other Round Robin test on the characterization of acoustical and elastical parameters of porous material, this one is more specific since the four laboratories are familiar with automotive applications. Methods and results are compared and discussed in this work.
Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Technical Paper

Optimal Control of Mass Transport Time-Delay Model in an EGR

2020-04-14
2020-01-0251
This paper touches on the mass transport phenomenon in the exhaust gas recirculation (EGR) of a gasoline engine air path. It presents the control-oriented model and control design of the burned gas ratio (BGR) transport phenomenon, witnessed in the intake path of an internal combustion engine (ICE), due to the redirection of burned gases to the intake path by the low-pressure EGR (LP-EGR). Based on a nonlinear AMESim® model of the engine, the BGR in the intake manifold is modeled as a state-space (SS) output time-delay model, or alternatively as an ODE-PDE coupled system, that take into account the time delay between the moment at which the combusted gases leave the exhaust manifold and that at which they are readmitted in the intake manifold. In addition to their mass transport delay, the BGRs in the intake path are also subject to state and input inequality constraints.
Technical Paper

Optimal Yaw Rate Control for Over-Actuated Vehicles

2020-04-14
2020-01-1002
As we are heading towards autonomous vehicles, additional driver assistance systems are being added. The vehicle motion is automated step by step to ensure passengers’ safety and comfort, while still preserving vehicle performance. However, simultaneous activations of concurrent systems may conflict, and non-suitable behavior may emerge. Our research work consists in proving that with the right coordination approach, simultaneous operation of different systems improve the vehicle’s performance and avoid the emergence of unwanted conflicts. To prove this, we gathered different control architectures implemented in commercial passenger cars, and we compared them with our control architecture using a unified reference vehicle model. The high-fidelity vehicle model is developed in Simcenter Amesim in a modular and extensible manner. This enables adding systems in a plug-and-play way.
Technical Paper

Calculation Process with Lattice Boltzmann and Finite Element Methods to Choose the Best Exterior Design for Wind Noise

2019-06-05
2019-01-1471
Wind noise in automobile is becoming more and more important as the customer expectations increase. On the other hand, great progress has been made on engine and road noises, especially for electric and hybrid vehicles. Thus, the wind noise is now by far the major acoustic source during road and motorway driving. As for other noises, automobile manufacturers must be able, for a new car project, to specify, calculate and measure each step of the acoustic cascading: Source Transfers, both solid and air borne In the case of the automotive wind noise, the excitation source is the dynamic pressure on the vehicle’s panels. This part of the cascading is the one influenced by the exterior design. Even if many others components (panels, seals, cabin trims) have a big influence, the exterior design is a major issue for the wind noise. The wind noise level in the cabin may change significantly with only a small modification of the exterior design.
Technical Paper

Influence of the Micro- and Macro-Structural Parameters on the Dynamic Behavior of Structures Made of Polymers Reinforced with Short Glass Fibers

2018-06-13
2018-01-1501
In order to design vehicles with diminished gCO2/km emissions level, car manufacturers aim at reducing the weight of their vehicles. One of the solutions advocated by the automotive industry consists in the replacement of metallic parts by lighter systems made of polymer reinforced composites. Unfortunately, the numerical simulations set to evaluate the vibratory and acoustic performances of systems made of this kind of materials are often not sufficiently effective and robust so that convincing test/simulation correlations are rarely met. Indeed, for polymer-based materials, numerous parameters affect the vibroacoustic behavior. On the one hand, it is well known that the viscoelastic properties (Storage -Young- and dissipative moduli) of polymers depend on the temperature, loading frequency and sometimes the humidity content.
Technical Paper

Robust Design of Acoustic Treatments for Powertrain Noise Radiation

2018-06-13
2018-01-1486
The reduction of the emitted noise from vehicles is a primary issue for automotive OEM’s due to the constant evolution of the noise regulations. As the noise generated by the powertrain remains one of the major noise sources at low/mid vehicle velocities, focus is set on efficient methods to control this source. Acoustic treatments and covers, made of multi-layered trimmed panels, are frequently selected to control the radiated sound and its directivity. In this context, numerical acoustic simulation is an attractive approach as efficient methodologies are available to study the acoustic radiation of powertrain units in working conditions (up to 6500 RPM nd frequencies up to 4 kHz). Moreover, handling acoustically-treated covers in such simulations has a low impact on the computational cost.
Technical Paper

Simulation Strategy for Structure Borne Noise Sources: Use of Super Elements and Blocked Forces Tensors between Suppliers and OEMs to Validate Components at Early Design Stage

2018-06-13
2018-01-1509
This paper is a case study from the TESSA project (French funded research program “Transfert des Efforts des Sources Solidiennes Actives”). The general frame of the work was to assess a collaborative design process between a car manufacturer and a major supplier using FE modelling and condensation of structure borne noise sources as an alternative to classic specification method for structure borne sources. Super elements from different FE commercial softwares have been used to assess the reliability of the method, the compatibility of the softwares and, most important, the relevance of applying a blocked force tensor to the component super element to predict the interior contribution of a component which is the originality of this work. The case study is an internal combustion engine cooling module (fan + shroud + exchangers) from VALEO including all assembly details (clips, decoupling elements) modelled under ABAQUS and its integration in a RENAULT Espace under NASTRAN.
Technical Paper

Experimental and Numerical Analysis of Diluted Combustion in a Direct Injection CNG Engine Featuring Post- Euro-VI Fuel Consumption Targets

2018-04-03
2018-01-1142
The present paper is concerned with part of the work performed by Renault, IFPEN and Politecnico di Torino within a research project founded by the European Commission. The project has been focused on the development of a dedicated CNG engine featuring a 25% decrease in fuel consumption with respect to an equivalent Diesel engine with the same performance targets. To that end, different technologies were implemented and optimized in the engine, namely, direct injection, variable valve timing, LP EGR with advanced turbocharging, and diluted combustion. With specific reference to diluted combustion, it is rather well established for gasoline engines whereas it still poses several critical issues for CNG ones, mainly due to the lower exhaust temperatures. Moreover, dilution is accompanied by a decrease in the laminar burning speed of the unburned mixture and this generally leads to a detriment in combustion efficiency and stability.
Technical Paper

Engine Knock Prediction and Evaluation Based on Detonation Theory Using a Quasi-Dimensional Stochastic Reactor Model

2017-03-28
2017-01-0538
Engine knock is an important phenomenon that needs consideration in the development of gasoline fueled engines. In our days, this development is supported by the use of numerical simulation tools to further understand and subsequently predict in-cylinder processes. In this work, a model tool chain based on detailed chemical and physical models is proposed to predict the auto-ignition behavior of fuels with different octane ratings and to evaluate the transition from harmless auto-ignitive deflagration to knocking combustion. In our method, the auto-ignition and emissions are calculated based on a new reaction scheme for mixtures of iso-octane, n-heptane, toluene and ethanol (Ethanol consisting Toluene Reference Fuel, ETRF). The reaction scheme is validated for a wide range of mixtures and every desired mixture of the four fuel components can be applied in the engine simulation.
Technical Paper

Coupled Fluid-Solid Simulation for the Prediction of Gas-Exposed Surface Temperature Distribution in a SI Engine

2017-03-28
2017-01-0669
The current trend of downsizing used in gasoline engines, while reducing fuel consumption and CO2 emissions, imposes severe thermal loads inside the combustion chamber. These critical thermodynamic conditions lead to the possible auto-ignition (AI) of fresh gases hot-spots around Top-Dead-Center (TDC). At this very moment where the surface to volume ratio is high, wall heat transfer influences the temperature field inside the combustion chamber. The use of a realistic wall temperature distribution becomes important in the case of a downsized engine where fresh gases hot spots found near high temperature walls can initiate auto-ignition. This paper presents a comprehensive numerical methodology for an accurately prediction of thermodynamic conditions inside the combustion chamber based on Conjugate Heat Transfer (CHT).
Journal Article

Development and Validation of a New Zero-Dimensional Semi-Physical NOx Emission Model for a D.I. Diesel Engine Using Simulated Combustion Process

2015-04-14
2015-01-1746
Reducing NOx tailpipe emissions is one of the major challenges when developing automotive Diesel engines which must simultaneously face stricter emission norms and reduce their fuel consumption/CO2 emission. In fact, the engine control system has to manage at the same time the multiple advanced combustion technologies such as high EGR rates, new injection strategies, complex after-treatment devices and sophisticated turbocharging systems implemented in recent diesel engines. In order to limit both the cost and duration of engine control system development, a virtual engine simulator has been developed in the last few years. The platform of this simulator is based on a 0D/1D approach, chosen for its low computational time. The existing simulation tools lead to satisfactory results concerning the combustion phase as well as the air supply system. In this context, the current paper describes the development of a new NOx emission model which is coupled with the combustion model.
Journal Article

Preliminary Design of a Two-Stroke Uniflow Diesel Engine for Passenger Car

2013-04-08
2013-01-1719
The target of substantial CO₂ reductions in the spirit of the Kyoto Protocol as well as higher engine efficiency requirements has increased research efforts into hybridization of passenger cars. In the frame of this hybridization, there is a real need to develop small Internal Combustion Engines (ICE) with high power density. The two-stroke cycle can be a solution to reach these goals, allowing reductions of engine displacement, size and weight while maintaining good NVH, power and consumption levels. Reducing the number of cylinders, could also help reduce engine cost. Taking advantage of a strong interaction between the design office, 0D system simulations and 3D CFD computations, a specific methodology was set up in order to define a first optimized version of a two-stroke uniflow diesel engine. The main geometrical specifications (displacement, architecture) were chosen at the beginning of the study based on a bibliographic pre-study and the power target in terms.
Journal Article

Electromagnetic and Structural Coupled Simulation to Investigate NVH Behavior of an Electrical Automotive Powertrain

2012-06-13
2012-01-1523
RENAULT aims to become the first full-line manufacturer putting to market zero-emission affordable electrical vehicles and is therefore developing 100 % electric powertrains. NVH problems related to electric machine design have nothing in common with those of gasoline or diesel engines: electric whistling is a high frequency harmonic phenomenon, easily detectable due to the low background noise of a non-thermal vehicle and mainly perceived as very unpleasant by the customer. Therefore we have developed a coupled numerical simulation between electromagnetic and structural models, making it possible to understand the influence of magnetic parts design on noise and vibration level. Impact of the spatial and time coherence between magnetic pressures and vibration modes of the motor will be explained. The novelty of our approach is to already take into account the whole powertrain structure radiation, including reducer and power supply boxes.
Technical Paper

Study of Intake Ports Design for Ultra Low Cost (ULC) Gasoline Engine Using STAR-CD

2012-04-16
2012-01-0407
In this study, different designs of intake ports for two-stroke Ultra Low Cost Gasoline Direct Injection Engine (ULC-GE) has been analyzed to conclude on best design using steady state analysis in STAR-CD. The four types of intake ports design with two cylinders, each having fourteen ports, have been studied. The basic differences in designs are horizontal inlet entry (perpendicular to cylinder axis) and vertical inlet entry (in-line with cylinder axis) having rotation of flow clockwise and anticlockwise. Each type is further differentiated in eight cases with varying distances between axis of two-cylinder as 85mm, 88mm, 91 mm, 94 mm, 97 mm, 100 mm, 105 mm and 112 mm. These designs are analyzed for four different pressure drops as 10 mbar, 50 mbar, 100 mbar and 150 mbar.
Technical Paper

Intake System Diagnosis for Diesel Engine with Dual-Loop EGR

2012-04-16
2012-01-0904
This paper proposes a method to detect an intake manifold leakage for a Diesel engine with a dual loop EGR system. The intake manifold leak has a strong impact on the engine performances by changing the intake manifold burned gas ratio. This fault is analyzed according to the control structure used and also according to the EGR operating mode. The paper proposes a diagnosis algorithm to detect the intake manifold leak in sequential or simultaneous use of the two EGR paths. The sensors considered are the mass air flow meter, the intake manifold pressure sensor, the exhaust equivalence ratio sensor and the differential pressure sensor (across the HP EGR valve). The diagnosis is based on a criteria that uses the redundancy between these sensors and air system models or estimators. The diagnosis threshold depends on the engine operating conditions as well as the sensor or model dispersions.
Technical Paper

Application and Evaluation of the Eulerian-Lagrangian Spray Atomization (ELSA) Model on CFD Diesel Spray Simulations

2011-06-09
2011-37-0029
During the last fifteen years, Computational Fluid Dynamics (CFD) has become one of the most important tools to both understand and improve the diesel spray development in Internal Combustion Engine (ICE). Most of the approaches and models used pure Eulerian or Lagrangian descriptions to simulate the spray behavior. However, each one of them has both advantages and disadvantages in different regions of the spray, it can be the dense zone or the downstream dilute zone. One of the most promising techniques, which has been in development since ten years ago, is the Eulerian-Lagrangian Spray Atomization (ELSA) model. This is an integrated model for capturing the whole spray evolution, including primary break-up and secondary atomization. In this paper, the ELSA numerical modeling of diesel sprays implementation in Star-CD (2010) is studied, and simulated in comparison with the diesel spray which has been experimentally studied in our institute, CMT-Motores Térmicos.
X