Refine Your Search

Topic

Search Results

Technical Paper

Real-Time Measurement of Camshaft Wear in an Automotive Engine - a Radiometric Method

1990-10-01
902085
A radiometric method has been developed for the determination of camshaft wear during engine operation. After a radioactive tracer is induced at the tips of one or more cam lobes by the technique of surface layer activation, calibration procedure are performed to determine the amount of radioactive material remaining versus the depth worn. The decrease in γ-ray intensity measured external to the engine is then directly related to cam lobe wear. By incorporating a high-resolution detector and an internal radioactive standard,measurement accuracy better than ±0.2 μm at 95% confidence has been achieved. Without the requirement of engine disassembly, this method has provided unique measurements of break-in wear and wear as a function of operating conditions. Because this approach requires only low levels of radiation, it has significant potential applications in wear control.
Technical Paper

Vehicle Evaluation of Synthetic and Conventional Engine Oils

1975-02-01
750827
A five-vehicle, 64 000-km test with 7.45 litre V-8 engines was conducted to determine if synthetic engine oils provided performance sufficiently superior to that of conventional engine oils to permit longer oil change intervals. The results show better performance in two areas of deposit control; inferior performance with respect to wear protection; and essentially equivalent performance in the areas of fuel and oil economies. Based on these data, it was concluded that synthetic engine oils do not provide the necessary performance required to safely recommend their use for extended oil change intervals. In addition, a cost analysis shows that the use of synthetic engine oils, even at a change interval of 32 000 km, will essentially double the customers' cost compared with conventional engine oils at GM's current 12 000-km change interval.
Technical Paper

Diesel Combustion Chamber Sampling - Hardware, Procedures, and Data Interpretation

1975-02-01
750849
In-cylinder sampling appears to be the only available means for obtaining detailed information of the diesel combustion process. This information is necessary to understand pollutant formation because of the intimate relationship between formation rates and local cylinder conditions. This paper discusses efforts to (1) examine and improve sampling valve design, (2) evaluate potential effects of the valve and the sampling system on sample composition, (3) find methods to extract useful information from sampling data. Sampling hardware is currently being used to study combustion in engines, but further work is needed to quantify the influence of hardware and procedures on sample composition and to design experiments to provide data containing maximum information.
Technical Paper

Design and Development of a Variable Valve Timing (VVT) Camshaft

1974-02-01
740102
The development of a variable valve timing (VVT) camshaft was initiated as a potential means of controlling exhaust emissions from a spark ignition piston engine. This approach was based on the fact that valve overlap influences internal exhaust gas recirculation which in turn affects spark ignition engine emissions and performance. The design, fabrication, bench tests and engine durability tests of a unit incorporating splines to allow the intake cams to move relative to the exhaust cams is discussed. Preliminary test data from a 350 CID (5700 cm3) engine fitted with the VVT camshaft are discussed with regard to durability and emissions.
Technical Paper

Combustion Bomb Tests of Laser Ignition

1974-02-01
740114
Tests of laser ignition are conducted in a combustion bomb. A range of fuels is investigated comprising isooctane, cyclohexane, n-heptane, n-hexane, clear indolene, and No. 1 diesel fuel. The ignition characteristics of laser-induced sparks are compared with sparks generated with a spark plug for different air/fuel ratios. The power density required to produce laser induced sparks is investigated. Although laser ignition appears to be impractical as an ignition device because of its low efficiency and high cost, it presents some interesting possibilities compared to the standard spark plug in that the laser spark is electrodeless and can be positioned anywhere inside the combustion chamber. Its primary use appears to be as a research tool.
Technical Paper

A Rotary Engine Test to Evaluate Lubricants for Control of Rotor Deposits

1974-02-01
740159
During development of the General Motors rotary engine, the lubricant was recognized as important to its success because certain lubricants produced deposits which tended to stick both side and apex seals. Consequently, it was decided to develop a rotary engine-dynamometer test, using a Mazda engine, which could be used for lubricant evaluation. In an investigation using an SE engine oil with which there was rotary engine experience, engine operating variables and engine modifications were studied until the greatest amount of deposits were obtained in 100 h of testing. The most significant engine modifications were: omission of inner side seals, plugging of half the rotor bearing holes, pinning of oil seals, grinding of end and intermediate housings, and using a separate oil reservoir for the metering pump. Using this 100 h test procedure, three engine oils and five automatic transmission fluids were evaluated.
Technical Paper

Emission Control with Lean Operation Using Hydrogen-Supplemented Fuel

1974-02-01
740187
Hydrogen-supplemented fuel was investigated as a means of extending lean operating limits of gasoline engines for control of NOx. Single-cylinder engine tests with small additions of hydrogen to the fuel resulted in very low NOx and CO emissions for hydrogen-isooctane mixtures leaner than 0.55 equivalence ratio. Significant thermal efficiency improvements resulted from the extension beyond isooctane lean limit operation. However, HC emissions increased markedly at these lean conditions. A passenger car was modified to operate at 0.55-0.65 equivalence ratio with supplemental hydrogen. Vehicle emissions, as established by the 1975 Federal Exhaust Emissions Test, demonstrated the same trends as the single-cylinder engine tests. The success of the hydrogen-supplemented fuel approach will ultimately hinge on the development of both a means of controlling hydrocarbon emissions and a suitable hydrogen source on board the vehicle.
Technical Paper

Effects of Spark Location and Combustion Duration on Nitric Oxide and Hydrocarbon Emissions

1973-02-01
730153
This study describes the effect of spark plug location on NO and HC emissions from a single-cylinder engine with a specially modified combustion chamber. The effects of changes in combustion duration caused either by spark location, dual spark plugs, or charge dilution on NO and HC emissions were also examined. Experiments were run at constant speed, constant load, and mbt spark timing. Nitric oxide emissions were the same with the spark plug located either near the intake or exhaust valve, but were higher with the spark plug midway between the valves or with dual ignition. Hydrocarbon emissions were lowest with the spark plug nearest the exhaust valve and increased with the distance of the spark plug from the exhaust valve. With charge dilution the decrease in NO emission was isolated into a pure dilution effect and a combustion duration effect. The combustion duration effect was minimal at rich mixtures and increased with air-fuel ratio.
Technical Paper

Correlation of Physical Properties with Performance of Polyacrylate Radial Lip Seals at -30F

1973-02-01
730051
This paper evaluates the tendency of lip seals to fracture in a test apparatus in which dynamic runout is 0.010 in and the temperature is cycled between -30 and 0 F. Seals made of eight different polyacrylate polymers were soap-sulfur cured with various types and amounts of carbon black. Physical tests included room-temperature flexibility defined by Young's modulus at small strains, standard tensile tests at room temperature, flexibility at sub-zero temperatures determined by a Gehman test, and sub-zero starting torques of the seals. Primary determinant of successful fracture resistance is a low starting torque resulting from good low-temperature flexibility. The effect of adding graphite to some of these formulations is described and some current commercially available seals are evaluated.
Technical Paper

Measurement of Air Distribution in a Multicylinder Engine by Means of a Mass Flow Probe

1973-02-01
730494
To lower emissions from a multicylinder engine, the air-fuel ratio must be optimized in all cylinders. If uniform fuel distribution is achieved, then the cylinder-to-cylinder air distribution is of particular interest. A probe system has been developed to measure mass flow rates to individual cylinders during operation of a complete engine. Fast response measurements of pressure, temperature, and flow velocity are made in the intake port near the valve during the intake portion of the cycle. High-speed collection of the large volume of data was accomplished through on-line use of an IBM 1800 computer. A V8 455 CID (7457 cm3) engine with stock intake and single exhaust system was used in the initial application of the mass flow probe. Measurements of 30-40 individual cycles were combined to calculate the mean volumetric efficiency for each cylinder.
Technical Paper

Continuous Secondary Air Modulation - Its Effect on Thermal Manifold Reactor Performance

1973-02-01
730493
Secondary air scheduling and average delivery rate have a great influence on the performance (carbon monoxide and hydrocarbon cleanup) of rich thermal manifold reactors. A continuously modulated secondary air system was devised to provide a tailpipe air-fuel ratio that did not change significantly with engine speed or load when a “flat” carburetion calibration was incorporated. This system involved throttling the inlet of the air pump(s) so that the air pump and engine intake pressures were equal. The continuous air modulation system was compared with an unmodulated system and a step-modulated system. The secondary air systems were investigated with both GMR “small volume” cast iron thermal reactors and Du Pont V thermal reactors on modified 350 CID V-8 engines in 1969 Chevrolet passenger vehicles. It was found that thermal reactor performance improved with each increase in control of the secondary air schedule.
Technical Paper

Initial Oxidation Activity of Noble Metal Automotive Exhaust Catalysts

1973-02-01
730570
The use of relatively small catalytic converters containing alumina-supported platinum (Pt) and palladium (Pd) catalysts to control exhaust emissions of hydrocarbons (HC) and carbon monoxide (CO) was investigated in full-scale vehicle tests. Catalytic converters containing 70-80in3 of fresh catalyst were installed at two converter locations on the vehicle. Carburetion was richer than stoichiometric, with air-fuel ratios (A/F) comparable to those proposed for dual-catalyst systems containing an NOx reduction catalyst. The vehicle was equipped with exhaust manifold air injection. Homogeneous thermal reaction in the exhaust manifolds played a significant role in the overall control of HC and CO. Four Pt catalysts, three Pd catalysts, and one Pt-Pd catalyst were prepared and evaluated. Total metal loadings were varied 0.01-0.07 troy oz. Hydrocarbon conversion efficiencies varied 62-82%, measured over the 1975 cold-hot start weighted Federal Test Procedure.
Technical Paper

Effects of Engine Oil Composition on the Activity of Exhaust Emissions Oxidation Catalysts

1973-02-01
730598
Platinum, palladium, and copper-chromium oxidation catalysts for exhaust emission control were exposed to exhaust gases from a steady-state engine dynamometer test in which the amount of oil consumed per unit volume of catalyst was high. When unleaded gasoline (0.004 Pb g/gal, 0.004 P g/gal) was used, conventional SE oil caused somewhat greater loss of catalyst activity than an ashless and phosphorus-free (“clean”) oil. Chemical analysis of the catalyst indicated that phosphorus from the conventional oil was probably responsible for the difference. However, a test run with low-lead (0.5 Pb g/gal, 0.004 P g/gal) gasoline and “clean” oil caused much greater catalyst activity deterioration than either of the tests with unleaded gasoline.
Technical Paper

Sensor for On-Vehicle Detection of Engine Exhaust Gas Composition

1973-02-01
730575
Various proposals for emissions cleanup systems have shown the desirability of regulating engine air-fuel ratio within precise limits. For this purpose a prototype exhaust sensor has been investigated. The sensor is a ceramic device, made of stabilized zirconia, which operates via electrochemical principles. It is placed directly in the exhaust stream and generates a voltage signal which is an approximate indication of engine air-fuel ratio. Several sensors have been installed in situ on engines operated under controlled dynamometer conditions. Fundamental response characteristics of the sensors have been determined. The results of this investigation, together with descriptions of the construction and installation configuration of the prototype sensor, are discussed.
Technical Paper

Dynamic Computer Techniques for Vehicle Emission Development

1972-02-01
720211
Development of engine-vehicle prototypes for low emissions and optimum fuel control characteristics has been facilitated through use of a computerized emissions test system. Simultaneous on-line sampling of exhaust species concentrations, fuel consumption, spark advance, pressures, and temperatures provides both graphical and computed outputs of several vehicle parameters that are important to development programs. On-line display of vehicle air-fuel ratio is continuously supplied. Either of two federal driving cycles (or any random driving schedule) may be employed. Dynamic calibration, range sensing, and zero-drift correction keep operator interaction and errors to a minimum. Capability for reprocessing, plotting, and/or patching stored data provides increased computational flexibility.
Technical Paper

Some Factors Affecting Gas Turbine Passenger Car Emissions

1972-02-01
720237
The intent of this paper is to put into proper perspective the relationships among the vehicle, the thermodynamic cycle, and the combustion process as they relate to exhaust emissions from a gas turbine-powered passenger car. The influence of such factors as car size, installed power, regeneration, and other cycle variables on level road load fuel economy, and on the production of oxides of nitrogen and carbon monoxide, are examined. In limited checks against experimental data, the mathematical model of the combustor used in this study has proved to be a reliable indicator of emission trends. The calculated emission levels are not final, however, with deficiencies subject to improvement as new combustor concepts are developed.
Technical Paper

Projected Lubricant Requirements of Engines Operating with Lead-Free Gasoline

1971-02-01
710585
Future low emissions engines will burn unleaded gasoline. Compared with engines of 1970, future engines will have lower concentrations of NOx in the blowby gases, and lower blowby flow-rates; however, oil temperatures will probably be unchanged. The consequences of these conditions for engines using high quality (SE) oils at current drain intervals are: virtual elimination of rust, reduction of sludge, no effect on wear and oil thickening, and possible worsening of varnish. Therefore, extension of the drain interval with SE engine oils in the future may be possible, but final decisions will depend on the findings of research in the areas of engine wear and varnish, and oil thickening.
Technical Paper

V. I. Improvers and Engine Performance

1968-02-01
680071
The use of multigrade (V.I. improved) oils in automotive engines has increased significantly in recent years. However, the performance of these oils in terms of factors such as oil economy, wear, and noise, is not always equal to that of single grade oils. Although the initial viscosity of multigrade oils is related to both the base oil and the V.I. improver, the viscosity decreases with use, with the primary factors determining the magnitude of the change being the degree of shear and the characteristics and concentration of the V.I. improver used. This decrease in viscosity has been assumed to be the cause of the decreases in oil economy that may occur with oil use. However, viscosity changes are not believed to be the primary factor responsible since similar oil economy changes have also been observed for single grade oils. Nevertheless, the characteristics and concentration of the V.I. improver used can be a significant factor influencing oil economy.
Technical Paper

A Combustion System for a Vehicular Regenerative Gas Turbine Featuring Low Air Pollutant Emissions

1967-02-01
670936
The combustion system developed for the General Motors GT-309 regenerative gas turbine is used to illustrate pertinent structural, performance, and exhaust emission considerations when designing for a vehicular gas turbine application. The development of each major component and the performance of the combustion system as a whole are reviewed. The satisfactory performance and durability potential of the GT-309 engine combustion system have been demonstrated by extensive operation in a component test facility and in several test cell and vehicle installed engines. Exhaust emissions of unburned hydrocarbons and carbon monoxide are minimal and are of no concern from an air pollution standpoint. No objectionable exhaust smoking and odor are produced.
Technical Paper

2,000,000 Miles of Fluid Evaluation in City Bus Automatic Transmissions

1967-02-01
670185
In certain types of city bus service some automatic transmission fluids can fail in less than 10,000 miles. In order to provide satisfactory transmission performance for longer mileage, improved fluids are required. An investigation was undertaken to obtain improved fluids. Fifteen different fluid formulations were evaluated in 30 city buses operated in normal service for more than 2,000,000 miles. It was determined that fluids fail because of frictional deterioration and oxidation. Based on these evaluations, only two fluids were found to be satisfactory for more than 40,000 miles; one additional fluid was satisfactory for more than 30,000 miles. The remaining 12 fluids failed in less than 20,000 miles.
X