Refine Your Search

Topic

Author

Search Results

Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

FMI for Physics-Based Models on AUTOSAR Platforms

2017-01-10
2017-26-0358
As automobiles become increasingly smarter, the need to understand within the automotive software the physical behavior of its parts is growing as well. The laws of physics governing such behavior are mostly formulated as differential equations, which today are usually created or obtained from various modeling tools. For solving them, the tools offer several solvers to satisfy the requirements of different problems. E.g. simple and fast explicit low order solvers for non-stiff problems and more complex implicit solvers for stiff problems. Though the modeling and code generation features as available in such tools are desirable for embedded automotive software, they cannot be used directly due to special restrictions with respect to hard realtime constraints. One such restriction is the organization of automotive software in components complying with the AUTOSAR standard which is not widely supported by the modeling tools.
Technical Paper

Flex Fuel Software Maintainability Improvement: A Case Study

2016-10-25
2016-36-0214
Many software functions currently available in the engine control units have been developed for several years (decades in some cases), reengineered or adapted due to new requirements, what may add to their inherent complexity an unnecessary complication. This paper deals with the study and implementation of a software reengineering strategy for the embedded domain, which is in transfer from research department to product development, here applied to improve maintainability of flex fuel functions. The strategy uses the SCODE “Essential Analysis”, an approach for the embedded system domain. The method allows to reduce the system complexity to the unavoidable inherent problem complexity, by decomposing the system into smaller sub problems based on its essential physics. A case study was carried out to redesign a function of fuel adaptation. The analysis was performed with the support of a tool, which covers all the phases of the method.
Technical Paper

On the Evaluation Methods for Systematic Further Development of Direct-Injection Nozzles

2016-10-17
2016-01-2200
To satisfy future emission classes, e.g. EU6c, the particulate number (PN) of Direct-Injection Spark-Ignition (DISI) engines must be reduced. For these engines, different components influence the combustion process and thus also the formation of soot particles and deposits. Along with other engine components, the injector nozzle influences the particulate number and deposits in both fuel spray behavior and nozzle “tip wetting”. In case of non-optimized nozzle layouts, fuel may impinge on the piston and the liner in an unfavorable way, which implies low-oxygen diffusive combustion by retarded vaporizing wall films. For the tip wetting, wall films are present on the actual surface of the nozzle tip, which is also caused by unadapted nozzles. For non-optimized nozzles, the latter effect can become quite dominant. This paper deals with systematic nozzle development activities towards low-deposit nozzle tips and thus decreasing PN values.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

J2716 SENT - Single Edge Nibble Transmission, Updates and Status

2011-04-12
2011-01-1034
The SAE J2716 SENT (Single Edge Nibble Transmission) Protocol has entered production with a number of announced products. The SENT protocol is a point-to-point scheme for transmitting signal values from a sensor to a controller. It is intended to allow for high resolution data transmission with a lower system cost than available serial data solution. The SAE SENT Task Force has developed a number of enhancements and clarifications to the original specification which are summarized in this paper.
Technical Paper

Ethernet and IP - The Solution to Master Complexity, Safety and Security in Vehicle Communication Networks?

2011-04-12
2011-01-1042
The development of vehicle communication networks is challenged not only by the increasing demand in data exchange and required data rate but also the need to connect the vehicle to external sources for personal connectivity of driver and car to infrastructure applications. Solutions are required to master complexity of in-vehicle communication networks, e.g. diagnostic access, flashing of Electronic Control Units, the data backbone connecting the vehicle domains and the data transfer of cameras. Safety (data transfer) and security (violation) issues of the communication networks gain more importance especially by introducing interfaces to external sources either via mobile devices or by connecting the vehicle to other external sources, e.g. Internet and Car to Infrastructure applications. The Internet Protocol (IP) appears to be an ideal solution to address these challenges, especially in connection with an Ethernet physical layer for fast data transfer.
Technical Paper

ISO 26262 Release Just Ahead: Remaining Problems and Proposals for Solutions

2011-04-12
2011-01-1000
The release of ISO 26262 is only about three months after the 2011 World Congress. However, there are still some contentious aspects that can introduce challenges or cause a disproportionate effort. In this paper, we will show how to avoid these problems. ISO 26262 provides a detailed method for classifying the Automotive Safely Integrity Level (ASIL) of in-vehicle electronic systems. However, the ASIL value for a specific function/product can vary significantly across the industry. Applying a lower level than the industry norm can cause substantial liability problems. Applying a higher level can initiate an “arms race” with competitors. This is particularly true if there are no vehicle-related reasons for choosing the higher level or if it doesn't make the product any safer. To encourage international harmonization, this paper will define ASIL classifications for the main automotive components. Most functions/products are currently being developed using parts of existing products.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

2009-04-20
2009-01-0848
This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Journal Article

Avoiding Electrical Overstress for Automotive Semiconductors by New Connecting Concepts

2009-04-20
2009-01-0294
Bosch Automotive Semiconductor Unit investigated destroyed semiconductor devices (ASIC) from electronic control unit complaints, which failed due to electrical overstress. It turned out that failure fingerprints could only be reproduced by semiconductor operation far beyond spec limits. One main failure mechanism is caused by hot plugging and bad or late ground connection. In today’s cars some applications are still active for minutes after ignition switch off. So, currents of several amps are delivered and in a typical production or garage environment, hot plugging cannot be avoided completely. Bosch suggests introducing extended ground pins to get an enforced switch on/off sequence during plugging. This poka yoke protection principle is successfully used in other industries for a long time and should now come into cars.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Journal Article

Fault Diagnosis of Fully Variable Valve Actuators on a Four Cylinder Camless Engine

2008-04-14
2008-01-1353
Fully Variable Valve Actuation (FVVA) systems enable to employ a wide range of combustion strategies by providing the actuation of a gas exchange valve at an arbitrary point in time, with variable lift and adjustable ramps for opening and closing. Making such a system ready for the market requires appropriate fault-diagnostic functionality. Here, we focus on diagnosis possibilities by using air intake system sensors such as Manifold Absolute Pressure (MAP) sensors. Results obtained on a 4-cylinder test bench engine are presented for the early intake opening strategy under different loads, and at medium range rotational speeds on steady-state conditions. It is shown that detection and identification of the different critical faults on each actuator is possible by using a Fourier series signal model of the MAP sensor.
Technical Paper

Simulation Tool Chain for the Estimation of EMC Characteristics of ECU Modules

2007-04-16
2007-01-1591
Electromagnetic Compatibility (EMC) requirements and the effort to fulfill them are increasing steadily in automotive applications. This paper demonstrates the usage of virtual prototyping to efficiently investigate the EMC behavior of a gasoline direct injection system. While the system worked functionally as designed, tests indicated that current and especially future client-specific EMC limits could not be met. The goal of this investigation was to identify and eliminate the cause of EMC emissions using a virtual software prototype including the controller ASIC, boost converter, pi filter, injection valves and wire harness. Applying virtual prototyping techniques it was possible to capture the motor control system in a simulation model which reproduced EMC measurements in the frequency ranges of interest.
Technical Paper

Expansion Devices for R-744 MAC Units

2005-05-10
2005-01-2041
In mobile R-744 A/C units mechanical expansion devices (e.g. orifice tubes) or electronic valves (e.g. PWM-valves) can be used. Besides the costs, aspects like coefficient of performance (COP), cooling capacity or control behavior - especially for extreme conditions - influence the choice of the valve type. This paper will present a comparison between an ideal electronic valve and a two stage mechanical orifice tube under full load and part load conditions. The influence of the expansion valve on COP and cooling capacity in different ambient conditions can be sufficiently described with steady-state simulations. The simulation tools used for this work are based on Modelica/Dymola. The simulation results show that for European climate conditions the use of two-stage orifices might increase fuel consumption.
Technical Paper

AutoMoDe - Notations, Methods, and Tools for Model-Based Development of Automotive Software

2005-04-11
2005-01-1281
This paper describes the first results from the AutoMoDe project (Automotive Model-based Development), where an integrated methodology for model-based development of automotive control software is being developed. The results presented include a number of problem-oriented graphical notations, based on a formally defined operational model, which are associated with system views for various degrees of abstraction. It is shown how the approach can be used for partitioning comprehensive system designs for subsequent implementation-related tasks. Recent experiences from a case study of an engine management system, specific issues related to reengineering, and the current status of CASE-tool support are also presented.
Technical Paper

Integration of Time Triggered CAN (TTCAN_TC)

2002-03-04
2002-01-0263
Time Triggered CAN (TTCAN) is an extension of the well-known CAN protocol, introducing to CAN networks time triggered communication and a system wide global network time with high precision. Time Triggered CAN has been accepted as international standard ISOCD11898-4. The time triggered communication is built upon the unchanged standard CAN protocol. This allows a software implementation of the time triggered function of TTCAN, based on existing CAN ICs. The high precision global time however requires a hardware implementation. A hardware implementation also offers additional functions like time mark interrupts, a stopwatch, and a synchronization to external events, all independent of software latency times. The TTCAN testchip (TTCAN_TC) is a standalone TTCAN controller and has been produced as a solution to the hen/egg problem of hardware availability versus tool support and research.
Technical Paper

The New Common Rail Fuel System for the Duramax 6600 V8 Diesel Engine

2001-11-12
2001-01-2704
The Bosch Common Rail Fuel Injection System with the new technologies developed for the Duramax 6600 engine offer numerous performance advantages including exhaust emissions control and noise. The layout of the fuel system components and electrical parts is specifically designed to control fuel injection characteristics. The new injector and nozzle technology was integrated to achieve the required system performance. The new 1600bar fuel pump is also a prerequisite for required system performance.
Technical Paper

Pre-crash Sensing - Its Functional Evolution Based on a Platform Radar Sensor

2000-10-03
2000-01-2718
Pre-crash functionality is defined in three functional steps: PRESET, PREFIRE and PREACT. The functional steps are described in the order of growing situation analysis performance requirements and an increasing amount of necessary system application effort. Each functional step defines its own range of view, the so-called virtual barrier. The definition of the virtual barrier is subject to various constraints in respect to sensor configuration and pre-crash performance. A more detailed description of PRESET functionality for frontal pre-crash is given together with a test example. Pre-crash sensing technology uses platform radar sensors. The platform sensors are designed for the integration of all possible functions that rely on sensor information from the close surroundings of the vehicle. This development approach guarantees a high cost efficiency, flexibility and modularity of the sensor system while still guaranteeing the full pre-crash functionality.
Technical Paper

Tool Support for Analyzing and Optimization Methods in Early Brake System Sizing Phases

2000-03-06
2000-01-0442
The manufacturers of passenger cars increasingly assign development and production of complete subsystems to the supplying industry. A brake system supplier has to give predictions about system quality and performance long time before the first prototypical system is built or even before the supplier gets the order for system development. Nowadays, the usage of computer-aided system design and simulation is essential for that task. This article presents a tool designed to support the development process. A special focus will be on how to define quality. A formal definition of quality is provided, illustrated and motivated by two examples.
X