Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Rapid Catalyst Heating System for Gasoline-Fueled Engines

2024-04-09
2024-01-2378
Increasingly stringent tailpipe emissions regulations have prompted renewed interest in catalyst heating technology – where an integrated device supplies supplemental heat to accelerate catalyst ‘light-off’. Bosch and Boysen, following a collaborative multi-year effort, have developed a Rapid Catalyst Heating System (RCH) for gasoline-fueled applications. The RCH system provides upwards of 25 kW of thermal power, greatly enhancing catalyst performance and robustness. Additional benefits include reduction of precious metal loading (versus a ‘PGM-only’ approach) and avoidance of near-engine catalyst placement (limiting the need for enrichment strategies). The following paper provides a technical overview of the Bosch/Boysen (BOB) Rapid Catalyst Heating system – including a detailed review of the system’s architecture, key performance characteristics, and the associated impact on vehicle-level emissions.
Technical Paper

GPS Coordinates Based Route Recognition and Predictive Functions

2022-10-05
2022-28-0124
Historically, whenever the automotive solutions’ state of art reaches a saturation level, the integration of new verticals of technology has always raised new opportunities to innovate, enhance and optimize automotive solutions. The predictive powertrain solutions using connectivity elements (e.g., navigation unit, e-Horizon or cloud-based services) are one of such areas of huge interest in automotive industry. The prior knowledge of trip destination and its route characteristics has potential to make prediction of powertrain modes or events in certain order and therefore it can add value in various application areas such as optimized energy management, lower fuel consumption, superior safety and comfort, etc.
Technical Paper

Large Eddy Simulations and Tracer-LIF Diagnostics of Wall Film Dynamics in an Optically Accessible GDI Research Engine

2019-09-09
2019-24-0131
Large Eddy Simulations (LES) and tracer-based Laser-Induced Fluorescence (LIF) measurements were performed to study the dynamics of fuel wall-films on the piston top of an optically accessible, four-valve pent-roof GDI research engine for a total of eight operating conditions. Starting from a reference point, the systematic variations include changes in engine speed (600; 1,200 and 2,000 RPM) and load (1000 and 500 mbar intake pressure); concerning the fuel path the Start Of Injection (SOI=360°, 390° and 420° CA after gas exchange TDC) as well as the injection pressure (10, 20 and 35 MPa) were varied. For each condition, 40 experimental images were acquired phase-locked at 10° CA intervals after SOI, showing the wall-film dynamics in terms of spatial extent, thickness and temperature.
Technical Paper

Optimal Automated Calibration of Model-Based ECU-Functions in Air System of Diesel Engines

2018-05-05
2018-01-5003
The success of model-based ECU-functions relies on precise and efficient modeling of the behavior of combustion engines. Due to the limited computing power, usually a combination of physical models and calibration parameters is preferred for engine modeling in ECU. The parameters can be scalars, 1 or 2-dimensional empirical models, such as look-up table for volumetric efficiency and effective area of the exhaust gas recirculation (EGR). A novel algorithm is proposed to automatically calibrate the look-up tables characterizing stationary functional relationships in ECU-function of the air system of a diesel engine with minimum calibration cost. The algorithm runs in the framework of online design of experiment (DoE), in which Gaussian process model (GPM) is adopted to approximate the relationships of interest.
Journal Article

The Thermodynamics of Exhaust Gas Condensation

2017-06-29
2017-01-9281
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Technical Paper

Integration Strategy of Safety Systems - Status and Outlook

2016-04-05
2016-01-1499
On the way to automated driving, the installation rate of surround sensing systems will rapidly increase in the upcoming years. The respective technical progress in the areas of driver assistance and active safety leads to a numerous and valuable information and signals to be used prior to, during and even after an accident. Car makers and suppliers can make use of this new situation and develop integrated safety functions to further reduce the number of injured and even deaths in car accidents. Nevertheless, the base occupant safety remains the core of this integrated safety system in order to ensure at least a state-of-the-art protection even in vehicles including partial, high or full automation. Current networked safety systems comprehend a point-to-point connection between single components of active and safety systems. The optimal integration requires a much deeper and holistic approach.
Technical Paper

2D Residual Gas Visualization in an Optical Direct Injection Spark Ignition Engine with IR Laser Absorption

2015-04-14
2015-01-1648
The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Investigation of the Parameters Influencing the Spray-Wall Interaction in a GDI Engine - Prerequisite for the Prediction of Particulate Emissions by Numerical Simulation

2013-04-08
2013-01-1089
Due to the EU6 emission standard that will be mandatory starting in September 2014 the particulate emissions of GDI engines come into the focus of development. For this reason, soot and the mechanisms responsible for the soot formation are of particular importance. A very significant source of particulate emissions from engines with gasoline direct injection is the wall film formation. Therefore, the analysis of soot emission sources in the CFD calculation requires a detailed description of the entire underlying model chain, with special emphasis on the spray-wall interaction and the wall film dynamics. The validation of the mentioned spray-wall interaction and wall film models is performed using basic experimental investigations, like the infrared-thermography and fluorescence based measurements conducted at the University of Magdeburg.
Journal Article

Next Generation Engine Start/Stop Systems: “Free-Wheeling”

2011-04-12
2011-01-0712
Engine Start/Stop systems reduce CO₂ emissions by turning off the combustion engine at vehicle standstill. This avoids the injection of fuel that would otherwise be needed simply to overcome internal combustion engine losses. As a next development step, engine losses at higher vehicle speeds are to be addressed. During deceleration, state-of-the-art engine technology turns off fuel injection as soon as the driver releases the gas pedal, thus the combustion engine is motored by the vehicle. The engine's drag torque could be desired by the driver, e.g., as a brake assist during downhill driving. However, quite frequently the driver wishes to coast at almost constant speed. Similar to Start/Stop operation, in such situations fuel is injected to simply overcome the combustion engine's drag torque. An operation mode referred to as "Free-Wheeling" reduces CO₂ emissions under such coasting conditions by disconnecting the combustion engine from the powertrain and by turning it off.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Journal Article

Investigation on the Effect of Very High Fuel Injection Pressure on Soot-NOx Emissions at High Load in a Passenger Car Diesel Engine

2009-06-15
2009-01-1930
Previous research has shown that elevating fuel injection pressure results in better air-fuel mixture formation, allowing for a further increase in maximum exhaust gas recirculation (EGR) rate while consequently reducing NOx emissions. The aim of this paper is to find out whether there is an optimum injection pressure for lowest soot-NOx emissions at a given boost pressure in high-speed diesel engines. Experiments are carried out on a single-cylinder research engine with a prototype common-rail system, capable of more than 200 MPa injection pressure. The effect of injection pressure on soot-NOx formation is investigated for a variety of boost conditions, representing the conditions of single to multi-stage turbocharger systems. Analysis of the data is performed at the application relevant soot to NOx ratio of approximately 1:10. It is observed that above a critical injection pressure, soot-NOx emissions are not reduced any further.
Journal Article

Data Based Cylinder Pressure Modeling for Direct-injection Diesel Engines

2009-04-20
2009-01-0679
In this article a new zero-dimensional model is presented for simulating the cylinder pressure in direct injection diesel engines. The model enables the representation of current combustion processes considering multiple injections, high exhaust gas recirculation rates, and turbocharging. In these methods solely cycle-resolved, scalar input variables from the electronic control unit in combination with empirical parameters are required for modeling. The latter are adapted automatically to different engines or modified applications using measured cylinder pressure traces. The verification based on measurements within the entire operating range from engines of different size and type proves the universal applicability and high accuracy of the proposed method.
Technical Paper

Application of ISO 26262 in Distributed Development ISO 26262 in Reality

2009-04-20
2009-01-0758
With its origin in the process industry, the IEC 61508 „Functional safety of electrical/electronic/programmable electronic safety-related systems” is not fully applicable in the automotive industry, forcing the automotive industry to work on an automotive specific adaptation (ISO 26262 “Functional Safety – Road Vehicles”). This ISO 26262 describes an ideal development process that starts from scratch. In reality development activities are often split locally and in time. This can only be handled with a world wide standard as a basis of a common approach, wide enough to give enough freedom to adapt to diverse boundary conditions, but tight enough to hinder local interpretations to be that far, that a complete safety case becomes impossible. Therefore a strict world-wide standard which allows compatible interpretations is mandatory.
Technical Paper

Comparison of Different EGR Solutions

2008-04-14
2008-01-0206
This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Technical Paper

Investigation into the Formation and Prevention of Internal Diesel Injector Deposits

2008-04-14
2008-01-0926
1 High precision high pressure diesel common rail fuel injection systems play a key role in emission control, fuel consumption and driving performance. Deposits have been observed on internal injector components, for example in the armature assembly, in the slots of the piston and on the nozzle needle. The brownish to colourless deposits can adversely impact driveability and result in non-compliance with the Euro 4 or Euro 5 emission limits. The deposits have been extensively studied to understand their composition and their formation mechanism. Due to the location of these deposits, the influence of combustion gas can be completely ruled out. In fact, their formation can be explained by interactions of certain diesel fuel additives, including di- and mono-fatty acids. This paper describes the methodology used and the data generated that support the proposed mechanisms. Moreover, approaches to avoid such interactions are discussed.
Technical Paper

Locally Resolved Measurement of Gas-Phase Temperature and EGR-Ratio in an HCCI-Engine and Their Influence on Combustion Timing

2007-04-16
2007-01-0182
Laser-based measurements of charge temperature and exhaust gas recirculation (EGR) ratio in an homogeneous charge compression ignition (HCCI) engine are demonstrated. For this purpose, the rotational coherent anti-Stokes Raman spectroscopy technique (CARS) was used. This technique allows temporally and locally resolved measurements in combustion environments through only two small line-of-sight optical accesses and the use of standard gasoline as a fuel. The investigated engine is a production-line four-cylinder direct-injection gasoline engine with the valve strategy modified to realize HCCI-operation. CARS-measurements were performed in motored and fired operation and the results are compared to polytropic calculations. Studies of engine speed, load, valve timing, and injection pressure were conducted showing the strong influence of charge temperature on the combustion timing.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

Thermodynamic Analysis and Benchmark of Various Gasoline Combustion Concepts

2006-04-03
2006-01-0231
Novel Combustion technologies and strategies show high potential in reducing the fuel consumption of gasoline spark ignition (SI) engines. In this paper, a comparison between various gasoline combustion concepts at two representative engine operating points is shown. Advantages of the combustion concepts are analyzed using thermodynamic split of losses method. In this paper, a tool for thermodynamic assessment (Split of Losses) of conventional and new operating strategies of SI engine and its derivatives is used. Technologies, like variable valve actuation and/or gasoline direct injection, allow new strategies to run the SI engine unthrottled with early inlet valve closing (SI-VVA) combined with high EGR, charge stratification (SI-STRAT) and controlled auto ignition (CAI), also known as gasoline homogeneous charge compression ignition (HCCI). These diverse combustion concepts show thermodynamic gains that stem from several, often different sources.
Technical Paper

Safety Support by an Automotive Middleware

2005-04-11
2005-01-1530
The amount of software integrated into today's vehicles growths exponential and tends to be a patchwork of non interrelated applications. However the interrelationship gets more and more intensive as applications start to cooperate and therefore communicate with each other. By introducing a domain exceeding middleware concept we want applications to experience a high level of integration and enable outsourcing of features applications have in common.
X