Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Intake Pressure on Performance and Emissions in an Automotive Diesel Engine Operating in Low Temperature Combustion Regimes

2007-10-29
2007-01-4063
A single-cylinder, light-duty, diesel engine was used to investigate the effect of changes in intake pressure (boost) on engine performance and emissions in low-temperature combustion (LTC) regimes. Two different LTC strategies were examined: a dilution-controlled regime characterized by high rates of exhaust gas recirculation (EGR) with early-injection (roughly 30° BTDC), and a late-injection (near TDC) regime employing moderate EGR levels. For both strategies, moderate (8 bar IMEP) and low (3 bar IMEP) load conditions were tested at intake pressures of 1.0, 1.5, and 2.0 bar. For both LTC strategies, increased intake pressure reduces emissions of unburned hydrocarbons (UHC) and CO, with corresponding improvements in combustion efficiency and indicated specific fuel consumption (ISFC), particularly at high load. Depending on the operating condition, UHC and CO emissions can stem from either over-lean or over-rich mixtures.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
X