Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Investigation of the Sources of Combustion Noise in HCCI Engines

2014-04-01
2014-01-1272
This article presents an investigation of the sources combustion-generated noise and its measurement in HCCI engines. Two cylinder-pressure derived parameters, the Combustion Noise Level (CNL) and the Ringing Intensity (RI), that are commonly used to establish limits of acceptable operation are compared along with spectral analyses of the pressure traces. This study focuses on explaining the differences between these two parameters and on investigating the sensitivity of the CNL to the ringing/knock phenomenon, to which the human ear is quite sensitive. Then, the effects of independently varying engine operating conditions such as fueling rate, boost pressure, and speed on both the CNL and RI are studied. Results show that the CNL is not significantly affected by the high-frequency components related to the ringing/knock phenomenon.
Journal Article

Effect of Ignition Improvers on the Combustion Performance of Regular-Grade E10 Gasoline in an HCCI Engine

2014-04-01
2014-01-1282
This study explores the use of two conventional ignition improvers, 2-ethylhexyl nitrate (EHN) and di-tert-butyl peroxide (DTBP), to enhance the autoignition of the regular gasoline in an homogeneous charge compression ignition (HCCI) engine at naturally aspirated and moderately boosted conditions (up to 180 kPa absolute) with a constant engine speed of 1200 rpm. The results showed that both EHN and DTBP are very effective for reducing the intake temperature (Tin) required for autoignition and for enhancing stability to allow a higher charge-mass fuel/air equivalence ratio (ϕm). On the other hand, the addition of these additives can also make the gasoline too reactive at some conditions, so significant exhaust gas recirculation (EGR) is required at these conditions to maintain the desired combustion phasing. Thus, there is a trade-off between improving stability and reducing the oxygen available for combustion when using ignition improvers to extend the high-load limit.
Technical Paper

Ignition and Early Soot Formation in a DI Diesel Engine Using Multiple 2-D Imaging Diagnostics*

1995-02-01
950456
A combination of optical imaging diagnostics has been applied to the fuel jet of a direct-injection diesel engine to study the ignition and early soot formation processes. Measurements were made in an optically accessible direct-injection diesel engine of the “heavy-duty” size class at a representative medium speed (1200 rpm) operating condition. Two fuels were used, a 42.5 cetane number mixture of the diesel reference fuels and a new low-sooting fuel (needed to reduce optical attenuation at later crank angles) that closely matches both the cetane number and boiling point of the reference fuel mixture. The combustion and soot formation processes are found to be almost identical for both fuels. Ignition and early combustion were studied by imaging the natural chemiluminescence using a calibrated intensified video camera. The early soot development was investigated via luminosity imaging and simultaneous planar imaging of laser-induced incandescence (LII) and elastic scattering.
Technical Paper

Natural Gas Autoignition Under Diesel Conditions: Experiments and Chemical Kinetic Modeling

1994-10-01
942034
The effects of ambient gas thermodynamic state and fuel composition on the autoignition of natural gas under direct-injection diesel conditions were studied experimentally in a constant-volume combustion vessel and computationally using a detailed chemical kinetic model. Natural gas compositions representative of variations observed across the U.S. were considered. These results extend previous observations to more realistic natural gas compositions and a wider range of thermodynamic states that include the top-dead-center conditions in the natural gas version of the 6V-92 engine being developed by Detroit Diesel Corporation. At temperatures less than 1200 K, the experiments demonstrated that the ignition delay of natural gas under diesel conditions has a dependence on temperature that is Arrhenius in character and a dependence on pressure that is close to first order.
Technical Paper

Ignition Delay Performance Versus Composition of Model Fuels

1992-02-01
920109
The goal of this work was to better understand the relationship between diesel fuel composition and its ignition performance. Ignition delay measurements were made as a function of temperature in a constant-volume combustion bomb at simulated diesel engine conditions. The fuels studied were binary mixtures of pure compounds and for comparison Phillips Diesel Control Fuel. The fuels were tested with and without cetane improver additive. The results show that the mechanisms of fuel autoignition change with temperature and composition. Change points correspond well to the low-, intermediate-, and high-temperature regimes defined in classical hydrocarbon oxidation studies. Differences in ignition performance are discussed in terms of the production of effectively chain terminating stabilized free radicals. Cetane number improver additive enhanced the autoignition performance of all fuels.
X