Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Compression Ignition of Low Octane Gasoline under Partially Premixed Combustion Mode

2018-09-10
2018-01-1797
Partially premixed combustion (PPC) is an operating mode that lies between the conventional compression ignition (CI) mode and homogeneous charge compression ignition (HCCI) mode. The combustion in this mixed mode is complex as it is neither diffusion-controlled (CI mode) nor governed solely by chemical kinetics (HCCI mode). In this study, CFD simulations were performed to evaluate flame index, which distinguishes between zones having a premixed flame and non-premixed flame. Experiments performed in the optical engine supplied data to validate the model. In order to realize PPC, the start of injection (SOI) was fixed at −40 CAD (aTDC) so that a required ignition delay is created to premix air/fuel mixture. The reference operating point was selected to be with 3 bar IMEP and 1200 rpm. Naphtha with a RON of 77 and its corresponding PRF surrogate were tested. The simulations captured the general trends observed in the experiments well.
Technical Paper

Effect of Mixture Formation and Injection Strategies on Stochastic Pre-Ignition

2018-09-10
2018-01-1678
Stochastic pre-ignition remains one of the major barriers limiting further engine downsizing and down-speeding; two widely used strategies for improving the efficiency of spark-ignited engines. One of the most cited mechanisms thought to be responsible for pre-ignition is the ignition of a rogue droplet composed of lubricant oil and fuel. This originates during mixture formation from interactions between the fuel spray and oil on the cylinder liner. In the present study, this hypothesis is further examined using a single cylinder supercharged engine which employs a range of air-fuel mixture formation strategies. These strategies include port-fuel injection (PFI) along with side and central direct injection (DI) of an E5 gasoline (RON 97.5) using single and multiple injection events. Computational fluid dynamic (CFD) calculations are then used to explain the observed trends.
Technical Paper

Investigation of Premixed and Diffusion Flames in PPC and CI Combustion Modes

2018-04-03
2018-01-0899
The experimental in-cylinder combustion process was compared with the numerical simualtion for naphtha fuel under conventional compression ignition (CI) and partially premixed combustion (PPC) conditions. The start of injection timing (SOI) with the single injection strategy was changed from late of −10 CAD aTDC to early of −40 CAD aTDC. The three-dimensional full cycle engine combustion simulation was performed coupling with gas phase chemical kinetics by the CFD code CONVERGE™. The flame index was used for evaluating the combustion evolution of premixed flame and diffusion flame. The results show that the flame index could be used as an indicator for in-cylinder homogeneity evaluation. Hydroperoxyl shows a similar distribution with the premixed combustion. Formaldehyde could be used as an indicator for low temperature combustion.
Technical Paper

Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions

2018-04-03
2018-01-0292
Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3].
X