Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Improving the Efficiency of Conventional Spark-Ignition Engines Using Octane-on-Demand Combustion - Part II: Vehicle Studies and Life Cycle Assessment

2016-04-05
2016-01-0683
This paper is the second of a two part study which investigates the use of advanced combustion modes as a means of improving the efficiency and environmental impact of conventional light-duty vehicles. This second study focuses on drive cycle simulations and Life Cycle Assessment (LCA) for vehicles equipped with Octane-on-Demand combustion. Methanol is utilized as the high octane fuel, while three alternative petroleum-derived fuels with Research octane numbers (RONs) ranging from 61 to 90 are examined as candidates for the lower octane fuel. The experimental engine calibration maps developed in the previous study are first provided as inputs to a drive cycle simulation tool. This is used to quantify the total fuel consumption, octane requirement and tank-to-wheel CO2 emissions for a light-duty vehicle equipped with two alternative powertrain configurations. The properties of the lower octane fuel are shown to affect the vehicle fuel consumption and CO2 emissions significantly.
Technical Paper

Improving the Efficiency of Conventional Spark-Ignition Engines Using Octane-on-Demand Combustion. Part I: Engine Studies

2016-04-05
2016-01-0679
This paper is the first of a two part study which investigates the use of advanced combustion modes as a means of improving the efficiency and environmental impact of conventional light-duty vehicles. This first study focuses on the application of so-called Octane-on-Demand combustion, whereby the fuel anti-knock quality is customized to match the real-time requirements of an otherwise conventional spark-ignition engine. Methanol is utilized as the high octane fuel, while three alternative petroleum-derived fuels with Research octane numbers (RONs) ranging from 61 to 90 are examined as candidates for the lower octane fuel. Experimental engine calibration maps are first developed to quantify the minimum amount of methanol that must be added to each lower octane fuel in order to reproduce the baseline engine performance attained on a market gasoline (RON 95). The properties of the lower octane fuel are shown to affect the engine performance significantly.
Journal Article

An Alternative Method Based on Toluene/n-Heptane Surrogate Fuels for Rating the Anti-Knock Quality of Practical Gasolines

2014-10-13
2014-01-2609
As SI engines strive for higher efficiency they are more likely to encounter knock and fuel anti-knock quality, which is currently measured by RON and MON, becomes more important. However, the RON and MON scales are based on primary reference fuels (PRF) - mixtures of iso-octane and n-heptane - whose autoignition chemistry is significantly different from that of practical fuels. Hence RON or MON alone can truly characterize a gasoline for its knock behavior only at their respective test conditions. The same gasoline will match different PRF fuels at different operating conditions. The true anti-knock quality of a fuel is given by the octane index, OI = RON −KS where S = RON − MON, is the sensitivity. K depends on the pressure and temperature evolution in the unburned gas during the engine cycle and hence is different at different operating conditions and is negative in modern engines.
X