Refine Your Search

Topic

Author

Search Results

Technical Paper

Effects of Engine Speed on Prechamber-Assisted Combustion

2023-08-28
2023-24-0020
Lean combustion technologies show promise for improving engine efficiency and reducing emissions. Among these technologies, prechamber-assisted combustion (PCC) is established as a reliable option for achieving lean or ultra-lean combustion. In this study, the effect of engine speed on PCC was investigated in a naturally aspirated heavy-duty optical engine: a comparison has been made between analytical performances and optical flame behavior. Bottom view natural flame luminosity (NFL) imaging was used to observe the combustion process. The prechamber was fueled with methane, while the main chamber was fueled with methanol. The engine speed was varied at 1000, 1100, and 1200 revolutions per minute (rpm). The combustion in the prechamber is not affected by changes in engine speed. However, the heat release rate (HRR) in the main chamber changed from two distinct stages with a faster first stage to more gradual and merged stages as the engine speed increased.
Technical Paper

Experimental Investigations of Methane-Hydrogen Blended Combustion in a Heavy-Duty Optical Diesel Engine Converted to Spark Ignition Operation

2023-04-11
2023-01-0289
The global need for de-carbonization and stringent emission regulations are pushing the current engine research toward alternative fuels. Previous studies have shown that the uHC, CO, and CO2 emissions are greatly reduced and brake thermal efficiency increases with an increase in hydrogen concentration in methane-hydrogen blends for the richer mixture compositions. However, the combustion suffers from high NOx emissions. While these trends are well established, there is limited information on a detailed optical study on the effect of air-excess ratio for different methane-hydrogen mixtures. In the present study, experimental investigations of different methane-hydrogen blends between 0 and 100% hydrogen concentration by volume for the air-excess ratio of 1, 1.4, 1.8, and 2.2 were conducted in a heavy-duty optical diesel engine converted to spark-ignition operation. The engine was equipped with a flat-shaped optical piston to allow bottom-view imaging of the combustion chamber.
Technical Paper

Comparing Unburned Fuel Emission from a Pre-chamber Engine Operating on Alcohol Fuels using FID and FTIR Analyzers

2022-08-30
2022-01-1094
Typical automotive emission testing systems usually employ Flame Ionization Detection (FID) analyzers to measure unburned fuel species in the exhaust, but the technique is not suitable for engines operating on alcohol fuels. The FID method is not sensitive to measuring unburned alcohol fuels due to the presence of oxygen bonds in the fuel molecule. Other techniques, such as Fourier Transform Infrared (FTIR), can provide accurate unburned fuel measurements with alcohol fuel. However, these techniques are expensive and are less accessible compared to FID analyzers. In this study, the unburned fuel emissions from the engine exhaust were measured simultaneously with FID and FTIR analyzers, with the engine operating on pure alcohols, which are methanol, ethanol, and n-butanol. While most previous work focuses on stoichiometric air-fuel mixtures, a wide range of lean operating conditions between global-λ 1.6 to 2.8 will be tested in this study.
Journal Article

Jet Characteristics of a Narrow Throat Pre-Chamber and Influence on the Main-Chamber Combustion

2022-08-30
2022-01-1006
Lean combustion is one of the most applied methods to increase engine efficiency and maintain a good trade-off with engine emissions. The pre-chamber combustion (PCC) is one of the most promising combustion concepts to extend the lean operating limits of the engine. The Narrow throat pre-chamber has shown better lean limit extension compared to other ignition sources. The pre-chamber jets and the main-chamber combustion were studied in a Heavy-Duty optical engine using methane fuel. The tested conditions covered global excess air ratios (λ), between 1.9 to 2.3. The combustion process was recorded using three collection systems: (a) Natural Flame Luminosity (NFL) with a temporal resolution of 0.1 CAD; (b) OH* Chemiluminescence, and (c) CH* Chemiluminescence with a temporal resolution of 0.2 CAD for both. The propagating velocity of the reacting jets was studied using Combustion Image Velocimetry (CIV) based on bottom view images of the main chamber.
Journal Article

Investigation of the Cryogenic Nitrogen and Non-Cryogenic N-Dodecane and Ammonia Injections using a Real-Fluid Modelling Approach

2022-08-30
2022-01-1078
In modern compression ignition engines, the dense liquid fuel is directly injected into high pressure and temperature atmosphere, so the spray transitions from subcritical to supercritical conditions. To gain better control of the spray-combustion heat release process, it is important to have a physically accurate description of the spray development process. This work explored the effect of real-fluid thermodynamics in the computational prediction of multiphase flow for two non-ideal situations: the cryogenic nitrogen and non-cryogenic n-dodecane and ammonia sprays. Three real-fluid equations of state (EoS) such as the Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), and Redlich-Kwong-Peng-Robinson (RKPR) coupled with the real-fluid Chung transport model were implemented in OpenFoam to predict the real-fluid thermodynamic properties. Validations against the CoolProp database were conducted.
Technical Paper

Optical Diagnostics of Isobaric and Conventional Diesel Combustion in a Heavy-Duty Diesel Engine

2022-03-29
2022-01-0418
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve higher thermal efficiency while lowering heat transfer losses and nitrogen oxides (NOx). However, isobaric combustion suffers from higher soot emissions. While the aforementioned trends are well established, there is limited literature about the high-temperature reaction zones, the liquid-phase penetration distance, and the flame tip propagation velocity of isobaric combustion. In the present study, the line-of-sight integrated imaging of Mie-scattering, combustion luminosity, and CH* chemiluminescence were conducted in an optically accessible single-cylinder heavy-duty diesel engine. The engine was equipped with a flat-bowl-shaped optical piston to allow bottom-view imaging of the combustion chamber. The experiments were conducted using n-heptane fuel for CDC and isobaric combustion modes.
Technical Paper

A Numerical Study on the Effect of a Pre-Chamber Initiated Turbulent Jet on Main Chamber Combustion

2022-03-29
2022-01-0469
To elucidate the complex characteristics of pre-chamber combustion engines, the interaction of the hot gas jets initiated by an active narrow throated pre-chamber with lean premixed CH4/air in a heavy-duty engine was studied computationally. A twelve-hole KAUST proprietary pre-chamber geometry was investigated using CONVERGE software. The KAUST pre-chamber has an upper conical part with the spark plug, and fuel injector, followed by a straight narrow region called the throat and nozzles connecting the chambers. The simulations were run for an entire cycle, starting at the previous cycle's exhaust valve opening (EVO). The SAGE combustion model was used with the chemistry modeled using a reduced methane oxidation mechanism based on GRI Mech 3.0, which was validated against in-house OH chemiluminescence data from the optical engine experiments.
Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Journal Article

Machine Learning Model for Spark-Assisted Gasoline Compression Ignition Engine

2022-03-29
2022-01-0459
The study showcases the strength of machine learning (ML) models in imitating the operation of an advanced engine concept - the gasoline compression ignition (GCI) - at low loads. The GCI engine is prone to exceeding the limits of criteria emissions at such loads, especially at the cold start when the catalyst is not activated. One proposition to accelerate catalyst light-off is using spark-ignition. This, however, adds an extra level of complexity in identifying an optimum operation point. The ML models can be a useful tool in guiding the engine calibration process. In this study, the ML models are trained on GCI engine experiments, covering different intake conditions, injection strategies, and spark settings. The models can predict seven engine performance parameters: fuel consumption, four engine-out emissions, exhaust temperature, and coefficient of variation (COV) in indicated mean effective pressure (IMEP).
Technical Paper

Performance Analysis and In-Cylinder Visualization of Conventional Diesel and Isobaric Combustion in an Optical Diesel Engine

2021-09-05
2021-24-0040
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve a similar or higher indicated efficiency, lower heat transfer losses, reduced nitrogen oxides (NOx) emissions; however, with a penalty of soot emissions. While the engine performance and exhaust emissions of isobaric combustion are well known, the overall flame development, in particular, the flow-field details within the flames are unclear. In this study, the performance analysis of CDC and two isobaric combustion cases was conducted, followed by high-speed imaging of Mie-scattering and soot luminosity in an optically accessible, single-cylinder heavy-duty diesel engine. From the soot luminosity imaging, qualitative flow-fields were obtained using flame image velocimetry (FIV). The peak motoring pressure (PMP) and peak cylinder pressure (PCP) of CDC are kept fixed at 50 and 70 bar, respectively.
Technical Paper

Flow-Field Analysis of Isobaric Combustion Using Multiple Injectors in an Optical Accessible Diesel Engine

2021-09-05
2021-24-0042
Isobaric combustion has shown the potential of improving engine efficiency by lowering the heat transfer losses. Previous studies have achieved isobaric combustion through multiple injections from a single central injector, controlling injection timing and duration of the injection. In this study, we employed three injectors, i.e. one centrally mounted (C) on the cylinder head and two side-injectors (S), slant-mounted on cylinder head protruding their nozzle tip near piston-bowl to achieve the isobaric combustion. This study visualized the flame development of isobaric combustion, linking flow-field details to the observed trends in engine efficiency and soot emissions. The experiments were conducted in an optically accessible single-cylinder heavy-duty diesel engine using n-heptane as fuel. Isobaric combustion, with a 50 bar peak pressure, was achieved with three different injection strategies, i.e. (C+S), (S+C), and (S+S).
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Parametric Study to Optimize Gasoline Compression Ignition Operation under Low Load Condition Using CFD

2021-04-06
2021-01-0440
The effects of intake pressure (Pin), start of injection (SOI), injection pressure (Pinj), injection split ratio (Qsplit), internal and external exhaust gas recirculation rates were varied to optimize several key parameters at a partially pre-mixed combustion low load/low speed condition using CFD. These include indicated specific fuel consumption (ISFC), combustion phasing (CA50), maximum rate of pressure rise (MRPR), maximum cylinder pressure (Pmax), indicated specific NOx (sNOx), indicated specific hydrocarbons (sHC) and Filter Smoke Number (FSN) emissions. Low-load point (6 bar indicated mean effective pressure (IMEP), 1500 revolutions per minute (RPM)) was selected where Pin varied between 1.25 and 1.5 bar, SOI between -100 and -10 crank angle degree (CAD) after top dead center (aTDC), Pinj between 100 and 200 bar, split ratio between 0 and 0.5, EGR between 0 and 45% and internal EGR measured by rebreathing valve height was varied between 0 and 4.5 mm.
Technical Paper

Machine Learning and Response Surface-Based Numerical Optimization of the Combustion System for a Heavy-Duty Gasoline Compression Ignition Engine

2021-04-06
2021-01-0190
The combustion system of a heavy-duty diesel engine operated in a gasoline compression ignition mode was optimized using a CFD-based response surface methodology and a machine learning genetic algorithm. One common dataset obtained from a CFD design of experiment campaign was used to construct response surfaces and train machine learning models. 128 designs were included in the campaign and were evaluated across three engine load conditions using the CONVERGE CFD solver. The design variables included piston bowl geometry, injector specifications, and swirl ratio, and the objective variables were fuel consumption, criteria emissions, and mechanical design constraints. In this study, the two approaches were extensively investigated and applied to a common dataset. The response surface-based approach utilized a combination of three modeling techniques to construct response surfaces to enhance the performance of predictions.
Journal Article

Analysis of Fuel Properties on Combustion Characteristics in a Narrow-Throat Pre-Chamber Engine

2021-04-06
2021-01-0474
In this study, the authors investigated the effect of fuel properties on the combustion characteristics by employing methane, methanol, ethanol, and primary reference fuels (PRFs) as the main chamber fuel while using methane for the pre-chamber. Global excess air ratios (λ) from 1.6 to lean limit were tested, while 13% of total fuel energy supplied to the engine was delivered via the pre-chamber. The gaseous methane was injected into the pre-chamber at the gas exchange top-dead-center (TDC). Port fuel injection was tested with both open and closed inlet valves. The pre-chamber assembly was designed to fit into the diesel injector pocket of the base engine, which resulted in a narrow throat diameter of 3.3 mm. The combustion stability limit was set at 5% of the coefficient of variation of gross IMEP, and the knock intensity limit was set at 10 bar. GT-Power software was used to estimate the composition of pre-chamber species and was used in heat release analysis of the two chambers.
Technical Paper

Simultaneous Negative PLIF and OH* Chemiluminescence Imaging of the Gas Exchange and Flame Jet from a Narrow Throat Pre-Chamber

2020-09-15
2020-01-2080
Pre-chamber combustion (PCC) is a promising engine combustion concept capable of extending the lean limit at part load. The engine experiments in the literature showed that the PCC could achieve higher engine thermal efficiency and much lower NOx emission than the spark-ignition engine. Improved understanding of the detailed flow and combustion physics of PCC is important for optimizing the PCC combustion. In this study, we investigated the gas exchange and flame jet from a narrow throat pre-chamber (PC) by only fueling the PC with methane in an optical engine. Simultaneous negative acetone planar laser-induced fluorescence (PLIF) imaging and OH* chemiluminescence imaging were applied to visualize the PC jet and flame jet from the PC, respectively. Results indicate a delay of the PC gas exchange relative to the built-up of the pressure difference (△ P) between PC and the main chamber (MC). This should be due to the gas inertia inside the PC and the resistance of the PC nozzle.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Technical Paper

A Demonstration of High Efficiency, High Reactivity Gasoline Compression Ignition Fuel in an On & Off Road Diesel Engine Application

2020-04-14
2020-01-1311
The regulatory requirements to reduce both greenhouse gases and exhaust gas pollutants from heavy duty engines are driving new perspectives on the interaction between fuels and engines. Fuels that reliefs the burden on engine manufacturers to reach these goals are of particular interest. A low carbon fuel with a higher volatility and heating value than diesel is one such fuel that reduces engine-out emissions and carbon footprint from the entire hydrocarbon lifecycle (well-to-wheel) and improves fuel efficiency, which is a main enabler for gasoline compression ignition (GCI) technology. The present study investigated the potential of GCI technology by evaluating the performance of a low carbon high efficiency, high reactivity gasoline fuel in Doosan’s 6L medium duty diesel engine.
Technical Paper

Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning

2020-04-14
2020-01-1313
In this study, the combustion system of a light-duty compression ignition engine running on a market gasoline fuel with Research Octane Number (RON) of 91 was optimized using computational fluid dynamics (CFD) and Machine Learning (ML). This work was focused on optimizing the piston bowl geometry at two compression ratios (CR) (17 and 18:1) and this exercise was carried out at full-load conditions (20 bar indicated mean effective pressure, IMEP). First, a limited manual piston design optimization was performed for CR 17:1, where a couple of pistons were designed and tested. Thereafter, a CFD design of experiments (DoE) optimization was performed where CAESES, a commercial software tool, was used to automatically perturb key bowl design parameters and CONVERGE software was utilized to perform the CFD simulations. At each compression ratio, 128 piston bowl designs were evaluated.
Technical Paper

Development of Fast Idle Catalyst Light-Off Strategy for Gasoline Compression Ignition Engine - Part 2

2020-04-14
2020-01-0314
The present investigation expands on our previous work on development of fast idle catalyst light-off strategy for a light duty gasoline compression ignition (GCI) engine. In part 1, the steady state experimental investigation in a single cylinder GCI engine indicate an optimum strategy for effective catalyst light off during cold start fast idle operation. According to this strategy, the strategy includes (1) dispersing a first fuel injection during the intake stroke, (2) dispersing a second fuel injection during the expansion stroke, and (3) igniting a spark during the expansion stroke. This strategy increases the exhaust temperature during cold starts thereby assisting in lighting the oxidation catalyst, and reduce emissions and provide greater combustion stability as compared to other injection and spark strategies.
X