Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Investigation of Injection Strategies to Improve Intelligent Charge Compression Ignition (ICCI) Combustion with Methanol and Biodiesel Direct Injection

2020-09-15
2020-01-2072
Applications of methanol and biodiesel in internal combustion engines have raised widespread concerns, but there is still huge scope for improvement in efficiency and emissions. The brand-new combustion mode, named as Intelligent Charge Compression Ignition (ICCI) combustion, was proposed with methanol-biodiesel dual fuel direct injection. In this paper, effects of injection parameters such as two-stage split-injections, injection timings, injection pressure and intake pressure on engine combustion and emissions were investigated at IMEP = 8, 10, and 12 bar. Results show that the indicated thermal efficiency up to 53.5% and the NOx emissions approaching to EURO VI standard can be obtained in ICCI combustion mode.
Journal Article

Exploring the Effects of the Key Multi-Injection Parameters on Combustion and Emissions in Intelligent Charge Compression Ignition (ICCI) Mode

2020-09-15
2020-01-2035
Developing advanced combustion mode has been the active area for high efficiency and ultra-low emissions of the next-generation internal combustion engines. In this paper, a series of experiments were conducted in a modified single-cylinder compression ignition engine for operating a brand-new combustion mode denoted as intelligent charge compression ignition (ICCI) mode. By using two common-rail systems, commercial gasoline and diesel were alternately directly injected into the cylinder through multi-injection strategies in the injection timing range of 50~320 °CA BTDC. Thus, the in-cylinder stratified condition can be flexibly and accurately adjusted in this unique combustion mode. The key injection parameters, such as gasoline injection timing and diesel split ratio, were investigated to explore their effects on engine combustion, emissions, and fuel consumption.
X