Refine Your Search

Topic

Search Results

Technical Paper

The Effects Of Gasoline Volatility On Mass And Composition Of The Inlet Port Wall Film In Port Injected SI Engines

1998-10-19
982517
A set of model fuels has been designed, using the Major-Component Fuel approach, to represent a range of gasoline mid-range and back-end volatilities. The thermo-physical properties of the model fuels have been used, together with a simple model of inlet system, to calculate liquid-vapour mass fractions in the inlet system, and the composition of the inlet port wall film. This has enabled the effects of gasoline volatility, speed, load and inlet port wall temperature to be studied systematically. The results indicate that, in cold start, only some 20-30% of the injected fuel is vapourised in the inlet port, leading to an accumulation of liquid fuel in the inlet port wall film reservoir. As the engine warms up, the mass of fuel in the reservoir decreases, and its composition changes, becoming progressively richer in heavy end species. Mid-range volatility affects the cold start behaviour, whilst back-end volatility affects the approach to fully-warmed up operation.
Technical Paper

Prediction of Combustion Chamber Deposit Growth in SI Engines

1997-10-01
972835
Combustion chamber deposit (CCD) formation in SI engines is a complex phenomenon which is dependent on a number of fuel and engine parameters. A mathematical model has been developed, based upon a previously proposed mechanism of CCD formation, which describes the physical and chemical processes controlling the growth of deposits in SI combustion chambers. The model allows deposit thickness to be predicted as a function of time, taking into account gasoline composition and factors influenced by engine operating conditions. Piston top deposit thicknesses predicted by the model for 38 unadditivated fuels show a strong correlation with data from three different bench engine tests. The model offers the possibility of predicting the amount of CCD produced by unadditivated gasolines for a range of engine designs, operating conditions and test durations.
Technical Paper

Full Mid-IR Spectral Characterisation of Lubricant in the Ring Pack of a Running Diesel Engine by Time-Resolved FTIR Spectrometry

1996-10-01
962003
A unique time-resolved Fourier Transform InfraRed (FTIR) spectrometry technique has been developed to obtain full mid-IR lubricant spectra directly from the ring-pack region of a firing, single cylinder, diesel engine. Initial studies of the detailed spectra show a growth of oxidation products, as indicated by a strong carbonyl absorption peak, observed to increase with load close to the top ring location, for both power and exhaust strokes. Similarly, the formation of alcohol, ketone, aldehyde and carboxylate oxidation products is accessible. Thus it is possible to gauge gross changes to lubricant composition as a function of spatial location through the ring-pack, engine stroke and the severity of engine operation.
Technical Paper

Influence of Combustion Chamber Deposits on Vehicle Performance and Tailpipe Emissions

1996-10-01
962027
An experimental programme has been carried out to quantify the influence of Combustion Chamber Deposit (CCD) removal on vehicle acceleration performance, fuel consumption and tailpipe emissions in several modern European car models. Vehicles were performance and emissions tested dirty', following accumulation of 16,000 kilometres (10,000 miles) with a light duty cycle, then ‘clean’, following removal of CCDs. This scheme was repeated for one model using a heavy duty driving cycle. Additional tests were carried out on three vehicle models equipped with knock-sensors for which ignition timing was monitored. CCDs reduced fuel consumption relative to the clean engine, in amounts dependent on vehicle model. CCDs had only small, detrimental effects on acceleration performance and power. They generally (but not always) increased NOx emissions and had variable and usually small effects on HC and CO emissions.
Technical Paper

Effects of Fuel Composition on In-Cylinder Air/Fuel Ratio During Fuelling Transients in an SI Engine, Measured Using Differential Infra-Red Absorption

1996-05-01
961204
Departures from optimum stoichiometry during transients (acceleration and deceleration) and cold start can lead to significant degradation in driveability and emissions control. Such departures occur as a result of a complex interplay between fuel transport mechanisms and the fuelling strategy. The relative contributions of several of these mechanisms are affected by fuel composition. To help understand these effects an open-path differential infra-red absorption technique has been used to monitor the transient evolution of the fuel vapour phase directly within the combustion chamber. The sensor projected a narrow infra-red beam which traversed the cylinder of an optical access engine along an open path under the head, and measured the path-integrated attenuation caused by absorption of the infra-red radiation by the fuel vapour. It operated in the near infrared (NIR) spectral region around 2.3 μm, an absorption band in hydrocarbon species containing methyl groups.
Technical Paper

A Laboratory Simulation and Mechanism for the Fuel Dependence of SI Combustion Chamber Deposit Formation

1995-10-01
952445
The formation of combustion chamber deposits in modern SI engines is predominantly derived from hydrocarbon fuels and occurs as a consequence of the quenching action of the combustion chamber walls on the flame. A laboratory experiment has been designed which enables rapid generation of deposit material in the form of viscous brown liquids. Heating these deposits produces material that is consistent in composition and physical appearance with mature engine deposits. The deposit-forming tendency of a number of individual hydrocarbon species has been determined. The amount of deposit increases with i) the amount of unsaturation present in the molecular structure and ii) the boiling point of the hydrocarbon fuel being burned. A structurally derived parameter for each hydrocarbon molecule is found to correlate well with deposition rate, allowing a unified treatment of the different generic forms of hydrocarbons in which deposit-forming tendency is linked to molecular structure.
Technical Paper

The Influence of the Fuel Hydrocarbon Composition on NO Conversion in 3-Way Catalysts: The NOx/Aromatics Effect

1995-10-01
952399
Vehicle-based studies have shown that a reduction in the aromatic content of gasoline fuels can result in increased NOx emissions from catalyst-equipped vehicles. A study with simulated exhaust gas has shown that light paraffins, especially methane, are unreactive and cause substantial breakthrough of unreacted NO over the catalyst. However, unsaturated exhaust components including aromatics are effective reactants and play a large part in converting NO over the catalyst. Engine tests have shown that methane is predominantly produced by fuel paraffins and olefins, but hardly at all by aromatics. Thus it appears that methane generated during combustion of low aromatics fuels may be the cause, wholly or in part, of the poor NO conversion efficiency observed when catalyst-equipped cars are operated on such fuels. However, it cannot be excluded that low aromatics fuels are associated with increased air-to-fuel ratio which will also contribute to poor NO performance.
Technical Paper

Heat Release and Knock in Paraffinic and Aromatic Fuels and the Effect of an Ashless Anti-knock Additive

1995-10-01
952405
Net heat release rates and knock characteristics were derived from in-cylinder pressures for different fuels in a single-cylinder engine; the effect of an ashless antiknock, N-methyl aniline (NMA) was also studied. The maximum net heat release rate (MHRR) resulting from the final high-temperature chemistry determines the knock intensity. Paraffinic fuels have similar knock intensities at comparable knock occurrence frequencies. Aromatic fuels have significantly lower MHRRs and give much lower mean knock intensities for a given knock occurrence frequency compared to paraffinic fuels. Adding NMA to a paraffinic fuel increases the spark advance required to get a chosen frequency of knock occurrence as it increases the octane number of the fuel but has little effect on MHRR and hence knock intensity.
Technical Paper

Review and Evaluation of Lubricated Wear in Simulated Valve Train Contact Conditions

1995-10-01
952473
The development of cross-flow single overhead camshaft designs of engines led to the introduction of pivoted cam followers with pads that were subjected to uni-directional rolling/sliding under heavy contact loads. Such components were prone to wear failure by a mechanism involving severe surface roughening. The initiating wear mechanism was eventually shown to be a form of “mild” wear and the Archard wear equation was used successfully to model the pattern of wear seen on cams and followers. The use of rigs to assess the wear performance of different lubricants has hitherto been a very poor predictor of engine performance, because of the complex interaction of materials, kinematics and forces in real engines. As a result, most automotive lubricant development relies on engine testing, which is expensive and time-consuming. Also, the complexities of the engine environment make it difficult to obtain much scientific insight into the tribological processes involved.
Technical Paper

Studies of Mixture Preparation in a Spark Ignition Engine Using Interferometric Laser Imaging for Droplet Sizing (ILIDS)

1995-02-01
950457
The transport of fuel droplets into the combustion chamber of an SI engine and their subsequent evaporation has been studied, using a new optical diagnostic technique, Interferometric Laser Imaging for Droplet Sizing (ILIDS), which allows temporally and spatially resolved measurements of droplet size distributions. The measurement technique and its application to in-cylinder engine measurements are described. Measurements were made under warmed-up conditions, with open valve injection timing, in a Ricardo Hydra single cylinder engine. The results showed differences in the evolution of the droplet size distribution in cylinder with variations in load and speed. At 1200 rpm under full load, droplets arrived quickly into the cylinder, and were small, the Sauter Mean Diameter (SMD) being in the region 10-12 μm on arrival, so that mixture preparation was good.
Technical Paper

Studies of Knock in a Spark Ignition Engine with “CARS” Temperature Measurements and Using Different Fuels

1995-02-01
950690
A “CARS” System using a modeless dye laser has been extensively calibrated and shown to give average temperatures of acceptably good accuracy. It has been used to measure temperatures in the end-gas of a single-cylinder E6 engine under knocking conditions using propane, commercial butane, iso-octane and a primary reference fuel made up of 90% iso-octane and 10% n-heptane by volume. These measurements show that there is significant heating of the end-gas because of pre-flame chemical reactions for all the fuels except propane. Propane has to be compressed to a much higher pressure compared to the other fuels studied in order to make it knock. At a given engine operating condition, there is significant cycle-by-cycle variation in both combustion and knock.
Technical Paper

An Experimental Study of Combustion Chamber Deposits and Their Effects in a Spark-Ignition Engine

1995-02-01
950680
A 1.8 litre four-cylinder engine with a slice between the head and the block carrying instrumented plugs has been used to study the growth of combustion chamber deposits and some of their effects on engine operation. Different techniques for measuring deposit thickness, knock onset and deposit effects on the thermal characteristics of the cylinder have been developed. Deposit growth as measured by deposit weight on the plugs is reasonably repeatable from run to run and cylinder to cylinder. The presence of deposits already in the cylinder does not affect deposit growth on clean plugs introduced into the combustion chamber. Deposit thickness and morphology vary substantially at different locations, the thickness being greatest at the coolest surfaces. Deposits increase the flame speed and reduce the metal temperatures just below the surface. They also reduce the mean heat flux away from the cylinder.
Technical Paper

The Lubricity of Deeply Hydrogenated Diesel Fuels - The Swedish Experience

1994-10-01
942016
Environmentally adapted diesel fuels defined by the Swedish Government contain extremely low levels of sulphur and have limited aromatics contents. Road trials and pump durability tests of these fuels revealed unacceptable wear in injection pumps due to low lubricity. Additive solutions were identified using bench tests and then proven in field trials. Market experience has substantiated the findings that fuels using the chosen additive give fully satisfactory performance. This paper illustrates how practical solutions to lubricity questions can be found, and is applicable wherever specifications demand fuels requiring a high degree of hydroprocessing.
Technical Paper

Effect of Automotive Gas Oil Composition on Elastomer Behaviour

1994-10-01
942018
Significant differences have been observed in the behaviour of elastomeric seals exposed to various automotive diesel fuels. This behaviour is governed not only by the chemistry of the elastomer but also by the aromatic content of the fuel and is typical of elastomer/fluid interactions occurring under diffusion control. Although no significant differences were observed in the response of nitrile elastomers exposed to peroxides, the use of antioxidant additives in “low” aromatic diesel fuel needs to be considered. The normal seal housing design criterion is such that seal integrity should not be compromised by the use of “low” aromatic fuels in normal operating circumstances. Some three years' experience in the Swedish market supports this view.
Technical Paper

A Chassis Dynamometer Study of the Effects of AGO Detergent and Ignition Improver on Vehicle Fuel Consumption

1994-10-01
942012
The benefits of diesel fuel additives have been demonstrated in a broad range of performance and operational areas, from the refinery, through storage and distribution, to fuel dispensing and vehicle operation. The customer is certainly aware of their effects on fuel performance in many of these respects, such as cold-weather operation, ease of starting, foaming, odour, etc. An area of particular interest in customer perception, however, is fuel economy. Excluding the use of after-market fuel-treatment devices, it is claimed that additives of different types can improve fuel economy, for example by improving combustion, by maintaining injection equipment in optimum condition, or by reducing engine frictional losses.
Technical Paper

First In-Situ Measurement of Lubricant Degradation in the Ring Pack of a Running Engine

1994-10-01
942026
Mid-infrared reflection-absorption spectroscopy, has been applied for the first time to the measurement of lubricant degradation products in the ring pack of a firing single-cylinder, IDI diesel. An IR-transmitting window, mounted in the cylinder wall, enables illumination of the moving piston by a broadband IR source located on the engine exterior. Light reflected from the piston is analysed in three wavebands to measure carbonyl oxidation products and oil volumes. Intra-cycle observations reveal differences in the apparent extent of lubricant oxidation between strokes and at different spatial locations in the ring pack. The data are interpreted in terms of a non-homogeneous sample.
Technical Paper

Fuel Quality Effects on Particulate Matter Emissions from Light- and Heavy-Duty Diesel Engines

1994-10-01
942022
As a result of increasing concerns over air quality, environmental legislation has led to more stringent emissions limits for diesel engines and vehicles. This has affected both engine manufactures and fuel suppliers. Whereas in the US, only the fuel requirements for heavy-duty diesel engines are of key interest, in Europe light-duty diesel applications are also important since diesel-powered passenger vehicles are accepted by customers and their market penetration has increased rapidly. This paper gives an update of Shell's ongoing research on correlations between diesel fuel quality and particulate emissions in both heavy- and light-duty applications. In heavy-duty testing (both steady-state and transient), sulphur is the dominant fuel property affecting particulate emissions. After sulphur correction, fuel effects are small and can best be described by a combination of cetane number and density.
Technical Paper

The Influence of Lubricant Rheology on Friction in the Piston Ring-Pack

1994-10-01
941981
A piston ring-pack lubrication model has been developed which takes into account both lubricant viscosity/temperature and viscosity/shear rate variations. In addition, lubricant starvation of the upper piston rings, due to restriction of the oil supply by the lower rings, has been included. Inputs to the model include piston ring profiles (measured using Talysurf profilometry) and gas pressure distributions throughout the ring-pack. The latter were calculated using the (known) combustion chamber pressure diagram at the relevant engine operating conditions. The model was validated by comparing predicted oil film thicknesses with those measured using a laser-induced fluorescence technique on a Caterpillar-1Y73 single-cylinder diesel engine. The engine was run at a range of speeds with two different, fully formulated, multigrade lubricants, and the oil film thickness under each of the piston rings was measured.
Technical Paper

The Effect of Gasoline Composition on Stoichiometry and Exhaust Emissions

1994-10-01
941868
Six full range gasolines were tested in two engines (one with a catalyst) operated at 4 steady states. Engine-out regulated emissions responded to equivalence ratio, Φ, in the accepted manner. For both CO and NOx, there was a characteristic, single emissions response to changes in Φ. Changing fuel composition will primarily alter the production of these emissions by modifying the stoichiometric air/fuel ratio, projecting engine operation onto another part of the Φ response curve. These Φ effects, which are independent of engine design, also determine how operating conditions affect engine-out CO and NOx. Speciated hydrocarbon measurements at engine-out and tail-pipe confirm results seen in previous test-cycle based programmes.
Technical Paper

NOx Aromatics Effects in Catalyst-Equipped Gasoline Vehicles

1994-10-01
941869
Investigations into fuel compositional effects on emissions using model and full range fuels suggest aromatic components promote NOx conversion over the catalyst Steady state results derived from a single engine (Ricardo Gasoline Fuels Consortium data) show that at a typical part load condition, the catalyst removes NOx less effectively with lower aromatic fuels. Neither CO nor H2 contribute significantly to catalyst performance. Two vehicles were tested over a European cycle. Toluene formed more combustion chamber NOx, offset by increased catalyst conversion efficiency giving lower tailpipe NOx than isooctane in the vehicle with the better catalyst light-off and AFR control.
X