Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Potential for Achieving Low Hydrocarbon and NOx Exhaust Emissions from Large Light-Duty Gasoline Vehicles

2007-04-16
2007-01-1261
Two large, heavy light-duty gasoline vehicles (2004 model year Ford F-150 with a 5.4 liter V8 and GMC Yukon Denali with a 6.0 liter V8) were baselined for emission performance over the FTP driving cycle in their stock configurations. Advanced emission systems were designed for both vehicles employing advanced three-way catalysts, high cell density ceramic substrates, and advanced exhaust system components. These advanced emission systems were integrated on the test vehicles and characterized for low mileage emission performance on the FTP cycle using the vehicle's stock engine calibration and, in the case of the Denali, after modifying the vehicle's stock engine calibration for improved cold-start and hot-start emission performance.
Technical Paper

Fuel Effects on Emissions from an Advanced Technology Vehicle

1992-10-01
922245
A 1991 Toyota Camry equipped with an electrically-heated catalyst (EHC) system was evaluated in duplicate over the Federal Test Procedure (FTP) with three different fuels. Evaluations were conducted with the EHC in place but without any external heating, and with the EHC operated with a post-crank heating strategy. The EHC system was placed immediately upstream of an original production catalyst, which was then moved to a location 40.6 cm from the exhaust manifold. The three test fuels were: 1) the Auto/Oil industry average gasoline, RF-A; 2) a fuel meeting California's Phase II gasoline specifications; and 3) a paraffinic test fuel. Non-methane organic gas (NMOG) emission rates with the EHC active were similiar with all three fuels, with absolute levels less than or equal to California's 50,000 mile Ultra-Low Emission Vehicle (ULEV) standard. Substantial differences, however were observed in the ozone forming potential of these fuels with the EHC active.
X