Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Evaluation of an On-board, Real-time Electronic Particulate Matter Sensor Using Heavy-duty On-highway Diesel Engine Platform

2020-04-14
2020-01-0385
California Air Resources Board (CARB) has instituted requirements for on-board diagnostics (OBD) that makes a spark-plug sized particulate matter (PM) sensor a critical component of the OBD system to detect diesel particulate filter (DPF) failure. Current PM OBD thresholds for heavy-duty on-highway vehicles is 0.03 g/hp-hr and for light-duty vehicles (2019+ Model Year LEV III) is 17.5 mg/mile. To meet these regulations, and more stringent future regulations, real-time PM sensors offer numerous benefits over traditional accumulation type resistive sensors. The focus of this work is on the experimental evaluation of such a real-time PM sensing technology manufactured by CoorsTek LLC. A 2011 model year on-highway heavy-duty diesel engine fitted with diesel oxidation catalyst/diesel particulate filter/selective catalytic reducer/ammonia oxidation catalyst (DOC/DPF/SCR/AMOX) was used for the evaluation program.
Technical Paper

Evaluation of Zero Oil Cooling for Improved BTE in a Compression Ignition Engine

2020-04-14
2020-01-0284
With increasing diesel engine emissions regulations and the desire to increase overall thermal efficiency of the engine, various combustion concepts have been explored. One of the potential pathways to higher efficiency is through reduction of in-cylinder heat transfer. In this paper, a concept aimed at decreasing in-cylinder heat transfer through increased piston temperature is explored. In order to increase piston temperature and ideally reduce in-cylinder heat transfer, a Zero-Oil-Cooling (ZOC) piston concept was explored. To study this concept, the test engine was modified to allow piston oil cooling to be deactivated so that its impact on parameters such as BTE, piston temperature, and emissions could be evaluated. The engine was equipped with in-cylinder pressure measurement for combustion analysis as well as a piston temperature telemetry system to evaluate piston crown temperature. This paper will discuss the process by which the engine was modified to achieve ZOC and tested.
Technical Paper

Opportunities for Electrified IC Engines

2020-04-14
2020-01-0281
The automotive industry is polarized between external pressures for ‘zero’ emission battery electric vehicles (BEV) and the ability to manufacture them economically and with minimal environmental impact. Most predictions of future BEV market share suggest that the IC engine has an important role to play in personal transportation for the next several decades. That engine will very likely be part of a hybrid architecture. Accepting that the engine will be part of a hybrid powertrain permits new design rules and strategies for the IC engine. A major characteristic change of the engine will be to reduce BMEP, power density and engine speed requirements as performance demand will be supplemented by electric machines. This paper focuses on some simple changes to the IC engine to increase thermal efficiency with the knowledge of the supplemental electric energy.
Technical Paper

Extend Syngas Yield through Increasing Rich Limit by Stratified Air Injection in a Single Cylinder Engine

2020-04-14
2020-01-0958
Dedicated exhaust gas recirculation (D-EGR®) concept developed by Southwest Research Institute (SwRI) has demonstrated a thermal efficiency increase on many spark-ignited engines at both low and high load conditions. The syngas (H2+CO) produced in the dedicated cylinder (D-cyl) by rich combustion helps to stabilize combustion at highly dilute conditions at low loads and mitigate knock at high loads. The dedicated cylinder with 25% EGR can typically run up to equivalence ratio of 1.4, beyond which the combustion becomes unstable. By injecting fresh air near the spark plug gap at globally rich conditions, a locally lean or near-stoichiometric mixture can be achieved, thus facilitating the ignitability of the mixture and increasing combustion stability. With more stable combustion a richer global mixture can be introduced into the D-cyl to generate higher concentrations of syngas. This in turn can further improve the engine thermal efficiency.
Technical Paper

CARB Low NOX Stage 3 Program - Aftertreatment Evaluation and Down Selection

2020-04-14
2020-01-1402
With the conclusion of the California Air Resources Board (CARB) Stage 1 Ultra-Low NOX program, there continues to be a commitment for identifying potential pathways to demonstrate 0.02 g/bhp-hr NOX emissions. The Stage 1 program focused on achieving the Ultra-Low NOX (ULN) levels utilizing a turbo-compound (TC) engine, which required the integration of novel catalyst technologies and a supplemental heat source. While the aftertreatment configuration provided a potential solution to meet the ULN target, a complicated approach was required to overcome challenges from low temperature exhaust. The Stage 3 program leverages a different engine architecture more representative of the broader heavy-duty industry to meet the Phase 2 GHG targets and to simplify the ULN aftertreatment solution.
Technical Paper

Electronic Control of Brake and Accelerator Pedals for Precise Efficiency Testing of Electrified Vehicles

2020-04-14
2020-01-1282
Efficiency testing of hybrid-electric vehicles is challenging, because small run-to-run differences in pedal application can change when the engine fires or the when the friction brakes supplement regenerative braking, dramatically affecting fuel use or energy regeneration. Electronic accelerator control has existed for years, thanks to the popularity of throttle-by-wire (TBW). Electronic braking control is less mature, since most vehicles don’t use brake-by-wire (BBW). Computer braking control typically uses a mechanical actuator (which may suffer backlash or misalignment) or braking the dynamometer rather than the vehicle (which doesn’t yield regeneration). The growth of electrification and autonomy provides the means to implement electronic brake control. Electrified vehicles use BBW to control the split between friction and regenerative braking. Automated features, e.g. adaptive cruise control, require BBW to actuate the brakes without pedal input.
Technical Paper

In-Situ Measurement of Component Efficiency in Connected and Automated Hybrid-Electric Vehicles

2020-04-14
2020-01-1284
Connected and automated driving technology is known to improve real-world vehicle efficiency by considering information about the vehicle’s environment such as traffic conditions, traffic lights or road grade. This study shows how the powertrain of a hybrid-electric vehicle realizes those efficiency benefits by developing methods to directly measure transient real-time efficiency and power losses of the vehicle’s powertrain components through chassis-dynamometer testing. This study is a follow-on to SAE Technical Paper 2019-01-0116, Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles, to understand the sources of efficiency gains resulting from connected and automated vehicle driving. A 2017 Toyota Prius Prime was instrumented to collect power measurements throughout its powertrain and driven over a specific driving schedule on a chassis dynamometer.
Technical Paper

Portable In-cylinder Pressure Measurement and Signal Processing System for Real-time Combustion Analysis and Engine Control

2020-04-14
2020-01-1144
To meet ever strict emissions regulations, cycle-to-cycle combustion control based on statistical processing and model-based prediction has attracted considerable attention from academia and industry. Feedback combustion control typically adjusts ignition-related parameters (spark advance, injection timing, cam timing, etc.) in a cycle-by-cycle manner based on the combustion characteristics measured from previous events. Cycle-to-cycle control guarantees a tight control at steady state and fast response during transients, enforcing an optimal combustion process over a wide variety of engine speed/load conditions. However, these control strategies are constrained by the combustion cycle duration, usually in the order of tens of milliseconds. Therefore, high-speed data acquisition and real-time processing is required.
Technical Paper

Use of Nitric Acid to Control the NO2:NOX Ratio Within the Exhaust Composition Transient Operation Laboratory Exhaust Stream

2020-04-14
2020-01-0371
The Exhaust Composition Transient Operation Laboratory (ECTO-Lab) is a burner system developed at Southwest Research Institute (SwRI) for simulation of IC engine exhaust. The current system design requires metering and combustion of nitromethane in conjunction with the primary fuel source as the means of NOX generation. While this method affords highly tunable NOX concentrations even over transient cycles, no method is currently in place for dictating the speciation of nitric oxide (NO) and nitrogen dioxide (NO2) that constitute the NOX mixture. NOX generated through combustion of nitromethane is dominated by NO, and generally results in a NO2:NOX ratio of <5 %. Generation of any appreciable quantities of NO2 is therefore dependent on an oxidation catalyst to oxidize a fraction of the NO to NO2.
Technical Paper

Development and demonstration of a class 6 range-extended electric vehicle for commercial pickup and delivery operation

2020-04-14
2020-01-0848
Range-extended hybrids are an attractive option for medium- and heavy-duty (M/HD) commercial vehicle fleets because they offer the efficiency of an electrified powertrain and accessories with the range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture. Under a U.S. Department of Energy award for M/HD Vehicle Powertrain Electrification, Cummins has developed a plug-in hybrid electric (PHEV) class 6 truck with a range-extending engine designed for pickup and delivery application. The National Renewable Energy Laboratory (NREL) assisted by developing a representative work day drive cycle for class 6 operation and adapting it to enable track testing.
Technical Paper

Investigation Into Improved Low-Temperature Urea-Water Solution Decomposition by Addition of Titanium-Based Isocyanic Acid Hydrolysis Catalysts and Surfactant

2020-04-14
2020-01-1316
Mitigation of urea deposit formation and improved ammonia production at low exhaust temperatures continues to be one of the most significant challenges for current generation SCR aftertreatment systems. Various technologies have been devised to alleviate these issues including: use of alternative reductant sources and thermal treatment of the urea-water solution (UWS) pre-injection. The objective of this work is to expand the knowledge base of a potential third option, which entails chemical modification of UWS by addition of titanium-based urea/isocyanic acid (HNCO) decomposition catalysts and/or surfactants to the fluid. Physical mixtures of urea and varying concentrations of ammonium titanyl oxalate (ATO), oxalic acid, and titanium dioxide (TiO2) were generated, and the differences in NH3 and CO2 production were evaluated.
Technical Paper

Detailed Analyses and Correlation of Fuel Effects on Stochastic Preignition

2020-04-14
2020-01-0612
Stochastic or Low-Speed Preignition (SPI or LSPI) is an undesirable abnormal combustion phenomenon encountered in forced induction, direct injection, spark-ignition engines. It is characterized by very early heat release and high cylinder pressure and can cause knock, noise and ultimately engine damage. Much of the focus on mitigating SPI has been directed towards the engine oil formulation, leading to the emergence of the Sequence IX and second-generation GM dexos® oil requirements. Engine design, calibration and fuels all contribute to the prevalence of SPI. As part of a recently completed research consortium, a series of engine tests were completed to determine the impact of fuel composition on SPI frequency. Abnormal combustion events were identified by both high cylinder pressure and early heat release. The fuel blends had varying levels of paraffins, olefins, aromatics and ethanol.
Technical Paper

Energy Efficient Maneuvering of Connected and Automated Vehicles

2020-04-14
2020-01-0583
Onboard sensing and external connectivity using Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Everything (V2X) technologies will allow a vehicle to "know" its future operating conditions with some degree of certainty, greatly narrowing prior information gaps. The increased development of such Connected and Automated Vehicle (CAV) systems, currently used mostly for safety and driver convenience, presents new opportunities to improve the energy efficiency of individual vehicles. The NEXTCAR program is one such initiative by the Advanced Research Projects Agency – Energy (ARPA-E) to developed advanced vehicle dynamics and powertrain control technologies that leverage such connected information streams. Southwest Research Institute (SwRI) in collaboration with Toyota and University of Michigan is currently working on improving energy consumption of a Toyota Prius Prime 2017 by 20%.
Technical Paper

Development of a Burner-Based Test System to Produce Controllable Particulate Emissions for Evaluation of Gasoline Particulate Filters

2020-04-14
2020-01-0389
Gasoline Direct Injection (GDI) engines have been widely adopted by manufacturers in the light-duty market due to their fuel economy benefits. However, several studies have shown that GDI engines have higher levels of particulate matter (PM) emissions relative to Port Fuel Injected (PFI) engines and diesel engines equipped with optimally functioning Diesel Particulate Filters (DPF). With stringent particle number regulations (PN) implemented in both the European Union and China, Gasoline Particulate Filters (GPF) are expected to be widely utilized to control particulate emissions. Currently, evaluating GPF technologies on a vehicle can be challenging due to a limited number of commercially available vehicles that are available, as well as the costs associated with vehicle procurement and evaluations utilizing a chassis dynamometer facility.
Technical Paper

Improving Heady Duty Natural Gas Engine Efficiency: A Systematic Approach to Application of Dedicated EGR

2020-04-14
2020-01-0818
The worldwide trend of tightening CO2 emissions standards and desire for near zero criteria pollutant emissions is driving development of high efficiency natural gas engines for a low CO2 replacement of traditional diesel engines. A Cummins Westport ISX12 G was previously converted to a Dedicated EGR ™ (D-EGR™) configuration with two out of the six cylinders acting as the EGR producing cylinders. Using a systems approach, the combustion and turbocharging systems were optimized for improved efficiency while maintaining the potential for achieving 0.02 g/bhp-hr NOX standards. A prototype variable nozzle turbocharger was selected to maintain the stock torque curve. The EGR delivery method enabled a reduction in pre-turbine pressure as the turbine was not required to be undersized to drive EGR. A high energy Dual Coil Offset (DCO®) ignition system was utilized to maintain stable combustion with increased EGR rates.
Technical Paper

Evaluation of Cylinder Deactivation on a Class 8 Truck over Light Load Cycles

2020-04-14
2020-01-0800
Selective Catalytic Reduction (SCR) systems provide excellent NOx control for diesel engines provided the exhaust inlet temperature remains 200 degrees C or higher. Since diesel engines run lean, extended light load operation typically causes exhaust temperatures to fall below 200 degrees C and SCR conversion efficiency diminishes. Heated urea dosing systems are being developed to allow dosing below 190 degrees C. However, catalyst face plugging remains a concern. Close coupled SCR systems and lower temperature formulation of SCR systems are also being developed. Current strategies of post fuel injection and retarded injection timing increases fuel consumption. One viable keep-warm strategy examined in this paper is cylinder deactivation (CDA) which can increase exhaust temperature and reduce fuel consumption.
Technical Paper

A controls overview on achieving ultra-low NOx​

2020-04-14
2020-01-1404
The California Air Resources Board (CARB) funded Stage 3 Heavy-Duty Low NOx program focusses on evaluating different engine and after-treatment technologies to achieve 0.02g/bhp-hr of NOx emission over certification and low load cycles. This paper highlights the controls architecture of the engine and after-treatment systems and discusses the effects of various strategies implemented and tested in an engine test cell over heavy-duty drive cycles. A cylinder deactivation enabled engine was integrated with an after-treatment system consisting of a Light-Off Selective Catalytic Reduction (LO-SCR) system with a heated urea dosing system which was located close to the turbine outlet, a Catalyzed Soot Filter (CSF), and a main SCR system with single point urea dosing. Southwest Research Institute (SwRI) had developed a model-based controller for the main SCR system in the Stage 1 Low-NOx program.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance below 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 or 4 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-4 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Technical Paper

CARB Low NOx Stage 3 Program – Modified Engine Calibration and Hardware Evaluations

2020-04-14
2020-01-0318
With the conclusion of the California Air Resources Board (CARB) Stage 1 Ultra-Low NOX program, there continues to be a commitment for identifying potential pathways to demonstrate 0.02 g/bhp-hr NOX emissions. The Stage 1 program focused on achieving the Ultra-Low NOX (ULN) levels on the heavy-duty regulatory cycles utilizing a turbo-compound (TC) engine, which required the integration of novel catalyst technologies and a supplemental heat source. While the aftertreatment configuration provided a potential solution to meet the ULN target, a complicated approach was required to overcome challenges from low temperature exhaust. The Stage 2 program was concerned with the development of a new low load test cycle and evaluating the trade-off between GHG and tailpipe NOx on the Stage 2 ULN solution.
Technical Paper

A Gas Separation Membrane Highly Selective to CO2 in the Exhaust of Internal Combustion Engines

2019-12-19
2019-01-2265
Southwest Research Institute has developed a passive, flow-through, membrane which separates carbon dioxide (CO2) from other exhaust gas species. Stoichiometric exhaust gas for 0% ethanol fuels contain approximately 14% CO2 by concentration. The membrane consists of a ceramic substrate impregnated with lithium zirconate (Li2ZrO3). In the presence of temperatures of 400-600 °C the CO2 reacts with lithium zirconate to form lithium carbonate (Li2CO3). The new compound moves from the inner surface of the membrane via partial pressure gradient to the outer wall of the membrane and desorbs into a low concentration CO2 environment, e.g. atmospheric air with 400 ppm CO2. SwRI has tested the membrane under engine-like conditions, comparable to 2000 rpm 10 bar BMEP operation, on a standalone burner rig (ECTO-lab burner). On the SwRI ECTO-lab burner rig temperature, flow-rate and exhaust gas products can be independently varied.
X