Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Fischer-Tropsch Diesel Fuel and Aftertreatment at a Low NOx, Low Power Engine Condition

2005-10-24
2005-01-3764
Previously we reported (SAE Paper 2005-01-0475) that emissions of toxicologically relevant compounds from an engine operating at low NOx conditions using Fischer-Tropsch fuel (FT100) were lower than those emissions from the engine using an ultra-low sulfur (15 PPM sulfur) diesel fuel (BP15). Those tests were performed at two operating modes: Mode 6 (4.2 bar BMEP, 2300 RPM) and Mode 11 (2.62 bar BMEP, 1500 RPM). We wanted to evaluate the effect on emissions of operating the engine at low power (near idle) in conjunction with the low NOx strategy. Specifically, we report on emissions of total hydrocarbon (HC), carbon monoxide (CO), NOx, particulates (PM), formaldehyde, acetaldehyde, benzene, 1,3-butadiene, gas phase polyaromatic hydrocarbons (PAH's) and particle phase PAH's from a DaimlerChrysler OM611 CIDI engine using a low NOx engine operating strategy at Mode 22 (1.0 bar BMEP and 1500 RPM).
Technical Paper

Development of Improved Arctic Engine Oil (OEA-30)

1999-05-03
1999-01-1523
U.S. Army arctic engine oil, MIL-L-46167B, designated OEA, provides excellent low-temperature operation and is multi functional. It is suitable for crankcase lubrication of reciprocating internal combustion engines and for power-transmission fluid applications in ground equipment. However, this product required 22-percent derated conditions in the two-cycle diesel engine qualifications test. Overall, OEA oil was limited to a maximum ambient temperature use of 5°C for crankcase applications. The technical feasibility of developing an improved, multi functional arctic engine oil for U.S. military ground mobility equipment was investigated. The concept was proven feasible, and the new oil, designated as OEA-30, has exceptional two-cycle diesel engine performance at full engine output and can be operated beyond the 5°C maximum ambient temperature limit of the MIL-L-46167B product.
X