Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigation of the Effects of Injection Timing on Thermo-Atmosphere Combustion of Methanol

The effects of various injection timing of methanol on thermo-atmosphere combustion of methanol by port injection of dimethyl ether (DME) and direct injection of methanol were experimentally investigated. The experiment results show that, as injection timing is at 6 degree before TDC, the combustion process comprises three stages: low temperature heat release of DME, high temperature heat release of DME and diffusion combustion of methanol. As injection timing increases, premixed combustion proportion of methanol is increased and diffusion combustion proportion is decreased. As injection timing increases to 126 degree before TDC, diffusion combustion of methanol disappears. At this time, the combustion process shows typical two stages heat release of HCCI combustion. As injection timing increases, required DME rate is increased, combustion efficiency and indicated thermal efficiency all first increase and then decrease.
Technical Paper

Experimental Study on HCCI Combustion of Dimethyl Ether(DME)/Methanol Dual Fuel

Homogeneous charge compression ignition (HCCI) is considered as a high efficient and clean combustion technology for I.C. engines. Methanol is a potential fuel for HCCI combustion. In this research, a single cylinder diesel engine was applied to HCCI operation. Methanol and dimethyl ether (DME) were fueled to the engine by fuel injection system with an electric controlled port in dual fuel mode. The results show that the stable HCCI operation of DME/methanol can be obtained over a quite broad speed and load region. And compared with higher speeds, the load region is even wider at low engine speed. E.g., at the engine speed of 1000 r/min, the maximum indicated mean effective pressure(IMEP) can reach 0.77 MPa, while at 2000r/min it is 0.53 MPa. Both DME and methanol influence HCCI combustion strongly, and by regulating DME/methanol proportions the HCCI combustion process could be controlled effectively.