Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Integrated Active Steering and Variable Torque Distribution Control for Improving Vehicle Handling and Stability

2004-03-08
2004-01-1071
This paper proposes an advanced control strategy to improve vehicle handling and directional stability by integrating either Active Front Steering (AFS) or Active Rear Steering (ARS) with Variable Torque Distribution (VTD) control. Both AFS and ARS serve as the steerability controller and are designed to achieve the improved yaw rate tracking in low to mid-range lateral acceleration using Sliding Mode Control (SMC); while VTD is used as the stability controller and employs differential driving torque between left and right wheels on the same axle to produce a relatively large stabilizing yaw moment when the vehicle states (sideslip angle and its angular velocity) exceed the reference stable region defined in the phase plane. Based on these stand-alone subsystems, an integrated control scheme which coordinates the control actions of both AFS/ARS and VTD is proposed. The functional difference between AFS and ARS when integrated with VTD is explained physically.
Technical Paper

Vehicle Handling Analysis Using Linearisation Around Non-Linear Operating Conditions

1996-02-01
960482
A non-linear example vehicle model including four degrees of freedom (yaw, sideslip, roll and steering), non-linear kinematics and the Magic Formula tyre model has been developed. With the assumption of small perturbations around any steady-state working condition, the linearised equations are derived. A novel approach is used for the linearisation of external forces and moments from the tyres. They are linearised in terms of the state variables rather than the slip angle, camber angle and vertical load which are themselves functions of the state variables. The results of this process are expressed in terms of stability derivatives. In order to use the method, the steady-state solution of the non-linear equations is first obtained for a particular value of lateral acceleration, then after the calculation of the stability derivatives, a linear analysis can be performed for the linear equations in terms of perturbed variables.
X