Refine Your Search

Topic

Search Results

Viewing 1 to 8 of 8
Technical Paper

Indian Cooperative Intelligent Transport Systems

2024-01-16
2024-26-0182
In response to the growing need for increased mobility and road safety, India, like other developing nations, is placing a high focus on modernizing its transport infrastructure. This report performs a thorough technical analysis of the challenges and implementation issues that were encountered when deploying Intelligent Transportation Systems (ITS) in India. This paper provides valuable information about successful ITS deployment and the unique challenges faced in the Indian context, drawing on global research and case studies. A detailed understanding of cutting-edge technologies and how they integrate with current infrastructure is essential for India's adoption of ITS to be successful. Collaboration with a range of stakeholders, including governmental organizations, transportation authorities, and technology businesses, is essential for effective deployment. Using examples from around the world, this study intends to find the best stakeholder management practices.
Technical Paper

Study of Key Attributes of Sustainability of Automobile Solutions in India

2022-10-05
2022-28-0313
The changing mobility landscape of India reveals that the erstwhile transport modes of the 20th century i.e., railways and road buses are making way for airlines, personal vehicles, shared mobility, metro rails. Rapid technological changes, stricter regulations, new transport cultures autonomous, connected, electric and shared (ACES), state-of-the-art and environmental concerns are shaping up the eco-system for automobiles. Despite these challenges roadways and automobiles will continue to be most prominent solution in India for future. But for that, the automobile sector should be agile, innovative, and adaptable to changing eco-system, vigilant to thwart threat of alternate mobility solutions and must provide sustainable solutions for the future. The purpose of this paper to evaluate various mobility solutions, ascertain prominence of upcoming automobile solutions and their sustainability for future in India.
Technical Paper

Application of Special Rubber Compound to Avoid BSR Issues in Vehicle

2022-03-29
2022-01-0614
Today, noise perceived by the occupants is becoming an important factor driving the design standards for the design of most of the interior assemblies in an automotive vehicle. Buzz, Squeak and Rattle (BSR) is a major contributor towards the perceived noise of annoyance to the vehicle occupants. An automotive vehicle consists of many chassis assemblies which are the potential sources of BSR noise. The potential locations of critical BSR noise could be contained within such assemblies as well as across their boundaries. Engine mount design is major area where BSR noises can be heard inside cabin on various road conditions. Natural rubber is regular rubber used in engine mount applications but in this paper BSR problems are solved by changing the rubber compound i.e., NR+BR (slippery compound). Detailed case study is presented where slippery rubber compound is used which is solving BSR issue and also meeting durability targets.
Technical Paper

Engine Mount Bracket Design Consideration for Impact Load Requirement

2022-03-29
2022-01-0758
The primary function of an engine mounting bracket is to support the powertrain system in all road conditions without any failure. The mount has to withstand different road conditions and driving maneuvers which exert loads on it. Also, it is challenging to change the mounting locations and types after the engine is built; hence it is paramount to verify the mounting brackets against all abuse loads in the design stage. The Car manufacturers ensure engine mount bracket design meets CAE's (Computer-aided engineering) static and fatigue load cases. The CAE is performed using digital RLD (Road load data) loads. The design checks cumulative strain or stress against specified service life requirements during break and fatigue FOS (Factor of safety) calculations. However, it is difficult to simulate the material's fracture toughness to estimate the effect of the impact load on the mounting bracket.
Technical Paper

High Voltage Battery (HVB) Durability Enhancement in Electric Mobility through 1D CAE

2020-08-18
2020-28-0013
The public transport in India is gradually shifting towards electric mobility. Long range in electric mobility can be served with High Voltage Battery (HVB), but HVB can sustain for its designed life if it’s maintained within a specific operating temperature range. Appropriate battery thermal management through Battery Cooling System (BCS) is critical for vehicle range and battery durability This work focus on two aspects, BCS sizing and its coolant flow optimization in Electric bus. BCS modelling was done in 1D CAE software. The objective is to develop a model of BCS in virtual environment to replicate the physical testing. Electric bus contain numerous battery packs and a complex piping in its cooling system. BCS sizing simulation was performed to keep the battery packs in operating temperature range.
Technical Paper

Designing In-Cab Sound of Vehicles as per the Customer Driving Pattern on Roads

2019-01-09
2019-26-0170
Vehicle refinement from point of view reduction in its Noise, Vibrations and Harshness (NVH) affects customer’s buying decision and it also directly influences his/her driving experience on road at different speeds. Customer voice, however, indicates that a traditional process of developing design solutions is not aligned with the customers’ expectations. Traditionally the load cases for NVH development are focused only on quietness of passengers’ cabin at idling and in 3rd gear wide open throttle cruising on smooth roads. In reality, the Driver of a premium sedan car or a Sports Utility Vehicle (SUV) or a Compact Utility Vehicle (CUV) expects something different than merely the low sound pressure level inside the cabin. His/her driving pattern over a day plays a crucial role. A vehicle-owner wishes to balance various attributes of the in-cab sound and tactile vibrations at a time.
Technical Paper

A Unique and Novel Approach for Increasing the Life of Automotive Audio Signaling Device

2014-04-01
2014-01-0237
Automotive Audio Signaling system is very vital and is controlled by local regulatory requirements. In India, usage of horn is very frequent due to highly congested traffic conditions, and is in the order of 10 to 12 times per kilometer. This results in the deterioration of the “contact”, which enables the functioning of the device. Hence the device requires premature replacement or frequent tuning, which are time consuming and results an increase in warranty costs and cost of service as well. Thus, to overcome this problem a unique and novel approach is proposed in this paper which enhances the life of the automobile horn, by implementing an additional pair of Contacts on circuit breakers, providing a parallel path for the power supply. This effort ensures that the life of the horn is increased by 5 times than the existing design.
Technical Paper

Seat Structure Comfort Evaluation Using Pink Noise and Human/Dummy Transmissibility Correlation

2013-11-27
2013-01-2852
Vehicle floor vibration is the resultant of different road inputs damped through various transfer paths. Seat comfort, which depends on these floor vibrations, can be evaluated with a single input signal “Pink noise”; which constitutes various road inputs. Transmissibility of seat structure on a vibration shaker with pink noise input includes all possible responses of road inputs. Still, transmissibility profile at vehicle end and component level varies. This is due to the utilization of “dummy” on component level testing on vibration shaker, which acts as a dead weight with dissimilar damping characteristics of human. A transmissibility correlation between human and dummy is attained by replacing the dummy in place of human and actuating it to find the difference in contribution between them for different class of vehicles. This contribution extrapolation from the damping effects of human and dummy is applied on dummy transmissibility.
X