Refine Your Search

Topic

Author

Search Results

Technical Paper

An Integrated Approach Using Multi-Body Dynamics Simulation & Driving Simulator towards Chassis Development for an SUV Vehicle

2024-01-16
2024-26-0050
Driving dynamics performance is one of the key customer attributes to be developed during product development. In the vehicle development process, freezing the hardware of the chassis aggregates is one of the major priorities to kick off the other vehicle development activities. The current work involves the development of a multilink suspension for an SUV class vehicle. Typically, each OEM performs several product development loops for maturing the vehicle design. The driving dynamics performance evaluation and tuning happens on a physical vehicle with the driver in Loop. Tuning of suspension parameter on the physical vehicle entails actual replacement of parts/components. This encompasses multiple tuning cycles in product development associated with increased cost and test time. To reduce the product development time and cost while delivering first time right chassis configuration, we took an approach of getting driver-in-loop through driving simulator in the concept phase.
Technical Paper

Influence of Clean Side Duct Topology on Mass Air Flow for Gasoline Engine on Passenger Vehicle

2024-01-16
2024-26-0339
The need for effective control systems is exacerbated by tighter pollution regulations and consumer demands for highly efficiently vehicles especially in the passenger segment. The air flow estimation of engine and accordingly controlling the fuel removes the lacuna of modern gasoline engines. The hot wire type mass air flow sensor is commonly used for air flow measurement, and it generally mounted in clean side piping to prevent damage to air mass flow sensor. The right estimation of air flow is possible by getting uniform flow over the different engine operating speed and load conditions. The placement of air flow sensor becomes critical considering the engine layout and packaging constraints and meeting the sensor mounting requirements. The deviation in mounting of air flow sensor will lead to consequently impact of engine performance and emissions.
Technical Paper

A New Gen ‘Super-Efficient Condenser’ for Mobile Air Conditioning Application

2023-09-14
2023-28-0043
In the modern era of automotive industry, occupant comfort inside the cabin is a basic need and no more a luxury feature. With increase in number of vehicles, the expectations from customers are also changing. One of the major expectations from real world customers is quick cabin cooling thru all seasons, particularly when the vehicle is hot soaked and being used in summer conditions. Occupant thermal comfort inside the vehicle cabin is provisioned by a mobile air conditioning (MAC) system, which operates on a vapor compression-based cycle using a refrigerant. The main components of a direct expansion (DX) based MAC system are, a compressor, condenser, evaporator, and expansion valve. Conditioned air is circulated inside the cabin using a blower, duct system and air vents. The AC condenser is the most critical component in AC circuit as it rejects heat, thereby providing for a cooling effect inside the cabin.
Technical Paper

Improvement of AC System for Bus with Tropical/Hot Ambient Application

2023-09-14
2023-28-0016
AC system provides the human comfort inside the cabin of a vehicle but at the expense of consumption of energy from the vehicle. On a global perspective for the bus segment, there is an increased demand for cooling in tropical countries. Optimization needs to be done in existing AC systems w.r.t packaging, cost & performance constraints. Major elements contributing to heat ingress are engine hood, front firewall, windshield & side glasses and bus body parts. Due to these reasons inadequate passenger comfort and poor cool down performance of the vehicle is observed. This paper refers to the reduction of heat ingress through different DOE (Design of Experiment) in the area of design & validation for duct & vent layout, insulation, glass & paint technology, evaporator blowers. The new duct design has been evaluated using a CFD tool by varying various parameters to generate desired output. The integrated use of the modifications was found significant improvement at vehicle level.
Technical Paper

Development of Mold in Color Plastics to Eliminate Paint without Compromising Aesthetic & Functional Requirements

2023-05-25
2023-28-1321
Vehicle aesthetic appearance is critical factor in the perceived quality of a vehicle. Auto OEM focuses on the improvement of perceived quality. The perceived quality of a vehicle is improved by achieving a superior finish on the visible parts. Plastic parts used in visible areas are painted to achieve a superior finish & aesthetic. However, the painting process is very energy intensive, releases a lot of harmful VOCs into the environment, emits carbon di-oxide into the environment & is a very costly process. Also, painted parts pose a challenge for recycling at the end of life. For painting one square meter area, around 6.5 Kg of co2 is released. Additionally, the painting cost contributes to around 60 % of the part cost. As the emphasis has increased on sustainability & reducing the cost, we took the challenge to develop novel mold in color material to eliminate the painting process without compromising the aesthetic & functional requirements of part.
Technical Paper

Comparative Analysis of Different Corrosion Test Cycles

2023-05-25
2023-28-1325
Corrosion in automotive industry is broadly categorized into cosmetic & perforation corrosion. Cosmetic corrosion comprises of superficial red rust which is deleterious to the overall aesthetic appeal of the vehicle but can be rectified. Perforation corrosion involves complete erosion of the panel, compromising structural integrity of the respective part. Perforation corrosion demands part replacement. In order to tackle this menace, automotive OEMs have formulated varied corrosion strategies in terms of selection of appropriate substrate, part design & surface protection scheme. Validation of various corrosion strategies become pivotal during the development phase of various parts and assemblies. Traditionally, Salt Spray Test (SST) has been used to determine corrosion life of materials/parts/assemblies. This test however does not simulate real-world conditions.
Technical Paper

A New Approach to Check the Heath of Engine Mounting & Suspension Bolted Joints

2022-03-29
2022-01-0634
The torque required to tighten any threaded joint is different from the necessary torque to untighten threaded bolt or nut, and it is not observed or widely known since this is a regular and straightforward operation. Typically the torque needed to untighten a newly tightened clamp is around 10% to 30% less than the torque to stretch it further. During tightening a threaded bolt, a significant amount of torque required to overcome friction in the threads and under the nut face. The proportion of the torque used to overcome frictional resistance depends upon the friction value. When we tighten a joint with a coefficient of friction of 0.12, only about approximately 14% of the torque required to stretch the fastener producing the clamp load with 86% of the torque is lost overcoming friction. The torque needed to pull the bolt always acts in the untightening direction, resulted in untightening torque lags behind the tightening torque.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

Engine Mount Bracket Design Consideration for Impact Load Requirement

2022-03-29
2022-01-0758
The primary function of an engine mounting bracket is to support the powertrain system in all road conditions without any failure. The mount has to withstand different road conditions and driving maneuvers which exert loads on it. Also, it is challenging to change the mounting locations and types after the engine is built; hence it is paramount to verify the mounting brackets against all abuse loads in the design stage. The Car manufacturers ensure engine mount bracket design meets CAE's (Computer-aided engineering) static and fatigue load cases. The CAE is performed using digital RLD (Road load data) loads. The design checks cumulative strain or stress against specified service life requirements during break and fatigue FOS (Factor of safety) calculations. However, it is difficult to simulate the material's fracture toughness to estimate the effect of the impact load on the mounting bracket.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
Technical Paper

Approach to Model AC Compressor Cycling in 1D CAE with Enhanced Accuracy of Cabin Cooldown Performance Prediction

2021-09-22
2021-26-0430
In previous work, AC Compressor Cycling (ACC) was modeled by incorporating evaporator thermal inertia in Mobile Air Conditioning (MAC) performance simulation. Prediction accuracy of >95% in average cabin air temperature has been achieved at moderate ambient condition, however the number of ACC events in 1D CAE simulation were higher as compared to physical test [1]. This paper documents the systematic approach followed to address the challenges in simulation model in order to bridge the gap between physical and digital. In physical phenomenon, during cabin cooldown, after meeting the set/ target cooling of a cabin, the ACC takes place. During ACC, gradual heat transfer takes place between cold evaporator surface and air flowing over it because of evaporator thermal inertia.
Technical Paper

Simulation Techniques for Rubber Gasket Sealing Performance Prediction

2021-09-22
2021-26-0388
Engine performance and emission control are key attributes in the overall engine development in which sealing of the mating components plays an important role to achieve the same. Rubber gaskets are being used for sealing of different Internal Combustion (IC) engine components. Gasket sealing performance needs to be ensured at initial development stage to avoid the design changes at the later part of development cycle. Design changes at later stage of development can potentially influence parameters like optimization, cost and time to market. Demand of utilization of virtual tools (front loading) is growing with the increasing challenges like stringent product development cycle time and overall project cost. This paper describes a procedure to simulate the rubber gasket and groove for different material conditions (dimensional tolerances). This entire simulation is divided into two phases. In the first phase of the simulation, Load Deflection curve (LD curve) is established.
Technical Paper

Regulatory Norms and Effect on Transmission Component Validation

2021-09-22
2021-26-0460
With the advent of BS VI regulations, automotive manufacturers are required to innovate the powertrains, fuel systems, exhaust and its after treatment systems to meet the regulatory requirements. The exhaust regulations can be met either by reducing the exhaust gases being generated by the engine (attacking the source) or by treating the exhaust gases in after treatment devices. The choice of the opted system varies with the manufacturer. The after-treatment devices such as catalytic converters are generally mounted in the engine compartment to take advantage of high temperature of exhaust gases to yield the reactions. Such an arrangement imposes a lot of thermal load on the peripheral components such as gearshift cables, bearings, oil seals, driveshafts etc. Thermal shields or thermal sleeve are used to address thermal issue and to protect transmission components.
Technical Paper

Door Seal Behavior Prediction and Enhancement in Performance Using Digital Simulation

2021-09-22
2021-26-0387
Automotive door seal has an important function which is used extensively where interior of the vehicle is sealed from the environment. Problem with door seal system design will cause water leakage, wind noise, hard opening or closing of doors, gap and flushness issue which impair customer’s satisfaction of the vehicle. Moreover, improper design of seal can lead to difficulty in installation of door seal on body panel. The design prudence and manufacturing process are important aspect for the functionality and performance of sealing system. However, the door sealing system involves many design and manufacturing variables. At the early design stage, it is difficult to quantify the effect of each of the multiple design variables. As there are no physical prototypes during rubber profile beading-out stages, engineers need to carry out non-linear numerical simulations that involve complex phenomena as well as static and dynamic loads for door seal.
Technical Paper

Engine Mount Stiffness Effect on Joint Integrity and Durability

2021-09-22
2021-26-0514
Powertrain mounts locations and stiffness in vehicle plays very important role in improving vehicle noise and vibration, which is caused by engine firing forces and road disturbances. Once locations are finalized, based on initial calculation and packaging then it is very much critical to play with mount stiffness to achieve required NVH level in vehicle. This paper describes the effect of mount stiffness on the bolted joint integrity. Stiffness fine tuning is done to improve vehicle level NVH and various iteration are done with change in stiffness values of A, B and C mounts. When stiffness specifications are finalized, it is recommended to acquire road load data on the finalized stiffness mount and check for bolted joint integrity since load signature is varying significantly on mount w.r.t stiffness change. If we change mount stiffness value from 128N/mm to 98N/mm, then loads on particular mount is getting increased from 4.5KN to 6.5KN in one of the track testing.
Technical Paper

Challenges and Approaches of Electric Vehicles Powertrain Mount System Optimization for NVH, Buzz Squeak Rattle and Durability

2021-08-31
2021-01-1085
In electric vehicles, the powertrain mounting system design has challenges different from conventional internal combustion engine (ICE) powertrains. Due to the absence of source noise, the customer predominantly experiences the buzz, squeak and rattle (BSR) noise. The 6 degrees of freedom (DOF) modal frequency target is less stringent than a three-cylinder or four-cylinder ICE powertrain. The durability loads in EV also differ due to less powertrain weight. In this paper, a study has been carried out about balancing all three main performance parameters of modal decoupling, BSR and durability through powertrain mount design optimization. The article shows that a carryover ICE powertrain mount has typical issues in Electric Vehicle (EV). A case study has discussed in detail how to manage those issues. Finally, it is concluded that a particular focus is required during an early stage of mount design to address these challenges for an EV.
Technical Paper

Automotive Buzz, Squeak and Rattle Attenuation Technique from Front Suspension Assembly in Passenger Car

2021-08-31
2021-01-1087
BSR noise is an important parameters for customer discomfort. According to a market survey, squeaks and rattles are the third most important customer concern in cars after six months of ownership. The high quality acoustic environment of a car, annoying noises like buzz, squeak, and rattle is related to various parameters such as material assembly, tolerance, aging, humidity, surface contact, and surface hardness. BSR is originated from frictional movement between two parts or from the impact between two parts. The rattle noise is caused when surfaces close to each other move perpendicular to each other due to insufficient attachments or insufficient structural strength. In our study, we have shown the impact of various front suspension component in front suspension assembly on BSR noise and also the method to detect and attenuate the same. A methodical analysis process is shown to identify the contributing part and resolve the BSR issue.
Technical Paper

A Comparative Study of Cradle and Sub Frame Type Powertrain Mounting System on Electric Vehicle

2021-08-31
2021-01-1022
The growing demand of fuel and cost saving on vehicle, today’s vehicle manufacturer are working on various weight reduction initiative in EV. Lighter weight vehicle have bigger challenges to meet NVH requirement. There are two types of EV called modified and adopted EV’s are commonly in use. The sub frame type of EV system comes under the category of modified EV. In this paper, a mounting system is studied and compared for a cradle type EV as well as sub frame or saddle type EV. MATLAB based optimization tools are used for parameter optimization. The focus is put on the optimization of mounting system location and stiffness for energy optimization, CoG and TRA-EA optimization. The best engine mounting system is compared and adopted based on simulation. 12 DOF studied to address high frequency resonance issues for a sub frame type EV. Finally robustness of the system is checked based on various simulation and optimization.
Technical Paper

Systematic Approach to Overcome Cavitation Noise Issue in Decoupled Hydraulic Mount

2021-08-31
2021-01-1027
NVH refinement of passenger vehicle is very much essential to level that customer did not find any irritation. Engine mounting selection and design is critical to achieve targeted NVH performance. Most of OEM’s are using properly tuned hydromount to have best idling NVH performance. Hydro-mount design should be tuned at problematic frequency where we can get the very low dynamic stiffness and can get the required performance. Hydromount should be designed carefully otherwise there will be abnormal noise due to cavitation effect. Cavitation noise is such a noise which is very difficult to identify that it is coming from mount. Cavitation is the formation and collapse of vapor bubbles in a working fluid when local static pressure falls below the vapor pressure of the working fluid. Systematic approach is presented in this paper to detect cavitation noise from hydraulic mount and how to overcome the same.
X