Refine Your Search

Topic

Search Results

Technical Paper

Dynamic Spark Advance Technology for Gasoline Fuel Blends

2024-01-16
2024-26-0074
Fuel efficiency is one of the most important customer requirement in Indian market as well as very crucial to meet the upcoming regulation like CAFÉ for Indian Automotive manufacturers. Most of the technology changes to meet this challenge, always come with a cost penalty with hardware addition. To counter the above challenge, a strategy has been identified in the EMS software that will dynamically adapt the spark timing based on fuel octane rating. This strategy has resulted in fuel efficiency improvement on Modified Indian Drive Cycle on chassis dynamometer test and as well as on real life road tests using fuels with various octane number.
Technical Paper

Development of an Efficient Vehicle Energy Management System for Fuel Cell Electric Vehicles

2024-01-16
2024-26-0173
Fuel cell electric vehicles generally have two power sources – the fuel cell power system and a high voltage battery pack - to power the vehicle operations. The fuel cell power system is the main source of power for the vehicle and its operations are supported by the battery pack. The battery pack helps to tackle the dynamic power demands from the vehicle such as during acceleration, to which the response of the fuel cell might be slower. The battery is also used to recover the energy from regeneration during braking and can also be used to extend the range of the vehicle in case the storage tanks runs out of hydrogen. In order to maximize the fuel efficiency of the fuel cell power system it is critical that these two power sources are used in conjunction with each other in an optimal manner.
Technical Paper

Review on Laser Welding of High Strength Aluminium Alloy for Automotive Applications

2024-01-16
2024-26-0193
High strength aluminium alloys are an ideal material in the automotive sector leading to a significant weight reduction and enhancement in product safety. In recent past extensive development in the field of high strength steel and aluminium was undertaken. This development has been propelled due to demand for light weight automotive parts. The high strength to weight ratio possessed by Al alloy helps in reducing the total weight of the vehicle without effecting the overall performance, thereby increasing the fuel economy, and reducing the carbon emission level. Joining of high strength aluminium alloy is critical to develop durable automotive products. Joining of high strength aluminium alloy for mass production in automobile industry is a challenging task. Laser welding is recognized as an advanced process to join materials with a laser beam of high-power, high- energy density.
Technical Paper

Simulation Techniques for Liquid Gasket Sealing Performance Prediction

2024-01-16
2024-26-0267
In the automotive industry, silicon adhesive has become increasingly popular due to its benefits in ease of assembly and cost savings associated with material and manufacturing processes. To meet the imperative of minimizing both time and expenses during the project's development phase, it becomes essential to select the appropriate gasket material and an optimal flange design at the outset of the design process. In order to achieve stringent emission standards such as Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFE) norms, a better sealing performance is an essential parameter. Various types of liquid gaskets such as silicon rubber based Room Temperature Vulcanizing (RTV) sealants and thermoset plastic based Anaerobic sealants are widely used in an Internal Combustion engine. They are commonly used for the components such as oil sump, bedplate, and gearbox housings, etc.
Technical Paper

Comparative Analysis of P2 and P3 HEV Architectures for Different Vehicle Segments

2024-01-16
2024-26-0284
Climate change due to global warming calls for more fuel-efficient technologies. Parallel Full hybrids are one of the promising technologies to curb the climate change by reducing CO2 emissions significantly. Different parallel hybrid electric vehicle (HEV) architectures such as P0, P1, P2, P3 and P4 are adopted based on different parameters like fuel economy, drivability, performance, packaging, comfort and total cost of ownership of the vehicle. It is a great challenge to select right hybrid architecture for different vehicle segments. This paper compares P2 and P3 HEV with AMT transmission to evaluate most optimized architecture based on vehicle segment. Vehicles selected for study are from popular vehicle segments in India with AMT transmission i.e. Entry segment hatch and Compact SUV. HEV P2 and P3 architectures are simulated and studied with different vehicle segments for fuel economy, performance, drivability and TCO.
Technical Paper

Development of Low Viscosity Fuel Economy Engine Oil for Commercial Vehicles

2024-01-16
2024-26-0040
Sustainability has evolved from being just a niche engagement to a fundamental necessity. The reduction of carbon emissions from aspects of human activity has become desirable for its ability to mitigate the impact of climate change. The Transportation industry is a critical part of the global economy – any effort to curb emissions will have a significant impact on CO2 reduction. Engine lubricant can play an efficient and key role to enhance powertrain performance that have undergone significant hardware changes to reduce emissions. As part of a significant collaborative programme between Tata Motors and Infineum, a new engine oil formulation SAE 5W-30 API FA-4 has been developed and commercially introduced for use in the modern Bharat Stage 6 Phase 2 engines.
Technical Paper

Optimization of Drum Brake System in HCVs Using Two-Way Coupled CFD Approach

2023-11-05
2023-01-1874
The brake systems are given top priority by automotive OEMs in the development of medium and heavy commercial trucks and buses, which can carry increased loads. When trucks and buses are travelling at high speeds or crossing downhill, during braking operations, the friction faces (brake drum and liner) experience a significant rise in temperature due to the conversion of kinetic energy into heat energy within seconds. This lowers the friction coefficient at the interface, resulting in distortions, thermal cracks, hub grease burning, and overheating. Drum brake system designs must be improved and optimized to dissipate more heat from the brake drum assembly and prevent brake failure. Nowadays advance transient numerical simulations assist in the design, development and optimization of the brake system to visualize 3D flow physics and temperature variations throughout the brake duty cycles. In the current study, different Cases of drum brakes to improve cooling efficiency are evaluated.
Technical Paper

Customized and Market Specific Thermal Robust Clutch System Solution

2021-09-21
2021-01-1239
The goal of reducing fuel consumption and CO2-Emission is leading to turbo-charged combustion engines that deliver high torque at low speeds (down speeding). To meet NVH requirements damper technologies such as DMF (Dual Mass Flywheel) are established, leading to reduced space for the clutch system. Specific measures need to be considered if switching over from SMF (Single Mass Flywheel) to DMF [8]. Doing so has an impact on thermal behavior of the clutch system, for example due to reduced and different distribution of thermal masses and heat transfer to the surroundings. Taking these trends into account, clutch systems within vehicle powertrains are facing challenges to meet requirements e.g. clutch life, cost targets and space limitation. The clutch development process must also ensure delivery of a clutch system that meets requirements taking boundary conditions such as load cycles and driver behavior into account.
Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

AMT Reverse Gear Engagement Dynamics and Control

2019-01-09
2019-26-0046
Now a day’s automated manual transmissions (AMT) are getting popular because of hassle-free gear shifting and improved fuel economy. OEMs are converting their existing manual gearbox to AMT gearbox with solution like hydraulic or electric AMT kit that replaces the manual shift mechanism to automated actuators. Generally, in manual gearbox, the operational principal of reverse gear is sliding mesh. Due to sliding mesh gear arrangement, it can create interruption for gearshift while controlling shift actuators. In this paper, reverse gear shift arrangement and its operational dynamics at different operating condition has been studied and analyzed in detail. Based on status of vehicle, to ease the gearshift, engagement flow process proposed. The control methods that increases probability of smooth and easier shifting in all operating condition discussed in detail. The developed control algorithm discussed along with its implementation on real vehicle and results.
Technical Paper

An Engine Stop Start System with Driver Behavior Learning and Adaption for Improving the User Experience

2018-04-03
2018-01-0609
Engine Stop/Start System (ESS) promises to reduce greenhouse emissions and improve fuel economy of vehicles. Previous work of the Authors was concentrated on bridging the gap of improvement in fuel economy promised by ESS under standard laboratory conditions and actual driving conditions. Findings from the practical studies lead to a conclusion that ESS is not so popular among the customers, due to the complexities of the system operation and poor integration of the system design with the driver behavior. In addition, due to various functional safety requirements, and traffic conditions, actual benefits of ESS are reduced. A modified control algorithm was proposed and proven for the local driving conditions in India. The ways in which a given driver behaves on the controls of the vehicles like Clutch and Brake Pedals, Gear Shift Lever were not uniform across the demography of study and varied significantly.
Technical Paper

A Feedback and Feedforward Control Algorithm for a Manual Transmission Vehicle Simulation Model

2018-04-03
2018-01-1356
Authors were challenged with a task of developing a full vehicle simulation model, with a target to simulate the electrical system performance and perform digital tests like Battery Charge Balance, in addition to the fuel efficiency estimation. A vehicle is a complicated problem or domain to model, due to the complexities of subsystems. Even more difficult task is to have a control algorithm which controls the vehicle model with the required control signals to follow the test specification. Particularly, simulating the control of a vehicle with a manual transmission is complicated due to many associated control signals (Throttle, Brake and Clutch) and interruptions like gear changes. In this paper, the development of a full vehicle model aimed at the assessment of electrical system performance of the vehicle is discussed in brief.
Technical Paper

Methodology Development to Accurately Predict Aerodynamic Drag and Lift for Passenger Vehicles Using CFD.

2016-04-05
2016-01-1600
Important vehicle performance parameters such as, fuel economy and high speed stability are directly influenced by its aerodynamic drag and lift. Wind tunnel testing to asses these parameters requires heavy investment especially when test wind tunnel is not available in the country where vehicle development center is present. Hence to save cost and to compress development time, it is essential to asses and optimize parameters of a vehicle in very early stages of development. Using numerical flow simulations optimization runs can be carried out digitally. Industry demands prediction of aerodynamic drag and lift coefficients (CD,CL) within an accuracy of a few counts, consuming minimal HPC resources and in a short turnaround time. Different OEMs deploy different testing methods and different softwares for numerical simulations.
Technical Paper

Optimization of Commercial Vehicle Cooling Package for Improvement of Vehicle Fuel Economy

2015-04-14
2015-01-1349
In a heavy commercial vehicle, the engine cooling package is designed by considering peak heat load on the vehicle cooling system from an engine end. In cooling systems, the major unit that consumes most power from the engine is the engine cooling fan. It was seen from the vehicle measured duty cycle data, for most of the time engine operates at part load condition. Regardless of demand from the engine cooling system, engine fan was operating continuously at equivalent speed of the engine. This results in continuous consumption of productive engine power from the fan end ultimately affecting vehicle fuel economy. The present study shows that low idle speed viscous fan has the potential to meet stringent engine cooling performance requirements and consumes less engine power throughout an actual vehicle duty cycle. Experiments were conducted on test vehicle with different fan speeds.
Technical Paper

Energy Efficient Air Conditioned Buses

2015-01-14
2015-26-0044
This paper focuses on factors that enhance energy efficiency of air conditioning system on mid-sized, standard and premium buses with engine power from 125 to 280 HP. It covers aspects like light weighting of roof air conditioning system, usage of optimized ducting system with minimal resistance to blowers, deployment of rotary scroll compressor with fast idle control in place of reciprocating piston compressor. The scope of this paper covers AC compressors driven by main engine of vehicle/ bus, study related to auxiliary/donkey engine driven AC compressor is not considered. Context- In order to enhance fuel efficiency in buses an energy efficient air conditioning system should be deployed. This will lead to reduced parasitic load on the engine and translate into direct fuel saving.
Technical Paper

High Fidelity Modeling and HIL Porting of a Hybrid Electric Car Development

2015-01-14
2015-26-0011
A hybrid electric powertrain being a complex system requires analysis of all its subsystems to optimally utilize, size components for performance evaluation and control strategy development. An integrated high fidelity model of these can lower development costs, time and achieve the targeted performance while allowing for early redefinition of the system. A high fidelity model of a sedan car featuring chassis with longitudinal and lateral dynamics, suspension with joints, tires calculating longitudinal & lateral forces during vehicle motion, Engine model with combustion & dynamics of reciprocating and rotating components, Electric motors, Battery system, and gearbox with synchronizers and friction components was developed. Powertrain components were interconnected using 3D rotational flanges. Weight distribution was accomplished by appropriately locating various powertrain components using 3D supporting mounts, which help to study the mount forces as well.
Technical Paper

Augmenting Light Weighting Horizon in Automotive

2014-04-28
2014-28-0023
Better ride and comfort, enhanced safety, reliability and durability, lower running cost as well as cost of ownership continue to be challenges for automotive OEMs. Higher fuel efficiency is considered as USP not only for lower running cost but also is hygiene factor from sustainability point of view. This has necessitated the need for Augmenting Light weighting horizon in automotive OEMs. Augmenting this leads to invention of innovative materials and processes for emerging cost competitive market. This paper focuses on technology efforts towards augmenting light weighting Horizon in Automotive. Light weighting concepts being explored by OEMs with the help of automotive component manufacturers from Powertrain - Engines & Transmission, Chassis and Suspension are discussed.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

Simulation of Restart Gradability of a Manual Transmission Vehicle Using AVL-CRUISE

2013-10-14
2013-01-2516
1 With increasing fuel price, the power train size is on a downward trend. For Fuel Economy maximization, the engine capacity and reduction ratios are getting reduced. So gradability of a vehicle is becoming a trade off factor for the power train size finalization in a car. At the same time OEMs are working hard to maintain profitability by reducing development and operational cost and time. In this complexly competitive scenario in automobile manufacturing, simulation is gaining an upper hand over actual testing as simulation consumes lesser time and resource as compared to actual testing. This paper is aimed at developing a simulation technique for restart or stop and start gradability which is a very critical parameter for finalization of engine torque characteristics and power train configuration. The simulation is done on AVL-CRUISE software.
Journal Article

An Intelligent Alternator Control Mechanism for Energy Recuperation and Fuel Efficiency Improvement

2013-04-08
2013-01-1750
With the current state of ever rising fuel prices and unavailability of affordable alternate technologies, significant research and development efforts have been invested in recent times towards improving fuel efficiency of vehicles powered with conventional internal combustion engines. To achieve this, a varied approach has been adopted by researchers to cover the entire energy chain including fuel quality, combustion quality, power generation efficiency, down-sizing, power consumption efficiency, etc. Apart from energy generation, distribution and consumption, another domain that has been subjected to significant scrutiny is energy recuperation or recovery. A moving vehicle and a running engine provide a number of opportunities for useful back-recovery and storage of energy. The most significant sources for recuperation are the kinetic energy of the moving vehicle or running engine and to a lesser extent the thermal energy from medium such as exhaust gas.
X