Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Heat-Treatment Process Optimization Using Dilatometry Technique and Simulation Tools

2019-01-09
2019-26-0242
Any metal component undergoes various treatments to get desired shape and desired properties. Some of the important properties are strength, hardness, % elongation etc. which comes under mechanical properties. These properties can be easily achieved through heat-treatment process. Typical example of heat-treatment processes are hardening and tempering in case of steel and aging process in case of aluminium alloys. Some of the new emerging materials viz. micro alloy steel does not require any hardening and tempering if cooling rate is maintained. Heat-treatment cycle depends on material grade and its alloying elements. A heat-treatment cycle for any grade is generally fixed based on conventional methods but they are not optimized. The need of hour is to optimize the heat-treatment cycle to improve productivity and energy consumption. Dilatometer is used to optimize heat-treatment cycle on sample level whereas simulation tools can be used for component level.
Technical Paper

Influence of Rake Angle and Cutting Speed on Residual Stresses Developed in Cutting Tool during Turning Operation

2014-04-28
2014-28-0014
In this work, the effect of tool rake angle and cutting speed on residual stresses of tool was studied, the rake angles of 0°, 5°, 10°, 15°, and 20° and a constant clearance (Relief angle) of 8° were used to turn bright mild steel on the lathe machine, A total of 15 experiments were carried out with three different cutting speeds (37.69, 59.37, 94.24 m/min) for each rake angle, keeping the feed rate and depth of cut constant. During the experimentation, the residual stresses were measured using an x-ray diffractiometer. This is all in order to explore the energy savings opportunities during regrinding of tools, useful production time and energy is being wasted due to regrinding or re-sharpening of tools when cutting tools got worn or blunt, selection of the rake angle which generate the optimum residual stresses in the tool, goes a long way in saving these time and energy.
Technical Paper

Light-weight Materials and their Automotive Applications

2014-04-28
2014-28-0025
Automobile industry is shifting towards lighter materials in order to meet the high strength to weight ratio as required for better performance, safety, and environmental concern. The objective of this review is to evaluate and compare the different advanced and light weight materials like advanced high strength steel (AHSS), Magnesium and Aluminium alloys, which will help in selection of appropriate materials for their intended application. In this paper comparison of materials on the basis of their current, applications, limitations, cost, potential future applications and percentage wise use in automotive vehicles are discussed. Solutions and suggestions are discussed to overcome the limitations of materials which will widen their future application. Case studies and charts for cost evaluation of different materials, on the basis of structural properties like stiffness and strength are also discussed.
Technical Paper

Evaluation of Fatigue Properties and Effect of Stress Concentration on Fatigue Life of Dual Phase Steel Grade DP 800

2011-01-19
2011-26-0120
Dual Phase (DP) steels with their high energy absorbing capacity are fast emerging as materials for automotive body applications with improved crashworthiness. The unique combination of high strength and good ductility associated with the DP steels originates from its specially developed microstructure that consists of martensitic islands in ferritic matrix. The high strength and good ductility are expected to give very good resistance to fatigue crack generation and propagation respectively. This paper discusses the fatigue properties determined for a DP steel grade viz. DP 800. The strain controlled fatigue tests were carried out on the un-notched specimens prepared from 1.2 mm sheets to generate E-N curves. The force controlled axial fatigue tests were carried out on two types of specimens prepared from 1.2 mm sheets to generate S-N curves for two Stress Concentration Factors (SCF) viz. 2.5 and 4.4.
Technical Paper

Study on Polymer Degradation due to Weathering and its Effect on Vehicle Safety

2011-01-19
2011-26-0097
Plastics (polymers) are nowadays clearly a material of choice in all application sectors including in Automobile sector. Automotive manufacturer have relived on new technology for vehicular accessories which are all made-up of different polymers like Acrylonitrile-Butadiene-Styrene (ABS), Poly Carbonates, Poly Methyl Methacrylate (PMMA), Acrylic, glass, resin etc. Although these components offer an impressive range of attractive properties, the effect of climatic conditions on the durability and performance of these materials is not fully understood. The durability, performance and rate of deterioration of these products are all significantly influenced by both the material composition, as well as the climatic conditions to which they are exposed. The degradation/ variation of the mechanical properties of the specimen treated at different environmental/ atmospheric conditions are a primary concern when recommending such a composite for particular use.
Technical Paper

Acoustical Design of Vehicle Dash Insulator

2011-01-19
2011-26-0022
The acoustical performance of a vehicle dash panel system is rated by the noise reduction, which is calculated from the sound transmission and absorption characteristics. A typical dash insulator consists of a steel panel (vehicle body panel), a porous decoupler and heavy layer in the form of sandwich construction. The use of dash panel is to block engine noise from entering into the interior cabin. In the present study the transmission loss of dash panel has been evaluated in reverberation chambers and the sound absorption of dash panel has been determined in impedance tube. This paper deals with improving over all sound transmission loss and shifting of the double wall resonance well below the engine firing frequencies by changing the decoupler materials such as felt and foams of different density and thickness and heavy layer mass per unit area.
X