Refine Your Search

Topic

Search Results

Technical Paper

An Investigation into the Use of Small, Flexible, Machine Tools to Support the Lean Manufacturing Environment

2001-09-10
2001-01-2566
Drilling fastener holes in large assemblies is traditionally accomplished through the use of large machine tools in order to obtain the accuracies required for the assembled part. Given recent advances of machine design and machine controller compensation, the accuracy of the motion platform can be corrected if the machine is repeatable. This coupled with the use of a vision system or touch probe to compensate for assembly variations, permit the use of smaller, more portable drilling systems. These smaller, more portable machine tools allow for lean manufacturing techniques to be incorporated into build processes, utilize less floor space, and in many cases are less costly than larger, permanent machine tools. This paper examines the feasibility of utilizing a small 5-axis, portable, drilling system for drilling the side panel skins on the F/A-18 E/F forward fuselage.
Technical Paper

F/A-18 E/F Outer Wing Lean Production System

2001-09-10
2001-01-2608
The Boeing F/A-18 E/F Program Wing Team, Lean Organization and Phantom Works have partnered to develop a “state of the art” lean production system for the Outer Wing that represents an evolutionary change in aircraft design and assembly methodology. This project is focused on improving quality, cycle and cost performance through the implementation of lean principles, technology integration and process improvements. This paper will discuss the approach taken to reach the end state objectives and the technologies and processes being developed to support it. Items to be discussed include lean principles and practices, new tooling concepts, improved part assembly techniques, advanced drilling systems, process flow enhancements and part handling/part delivery systems.
Technical Paper

Specification Reform of Avionics Thermal Design Criteria – An F-15 Case Study

2001-07-09
2001-01-2156
Traditional thermal design criteria for avionics equipment are reviewed. Several studies have recently been conducted on the F-15 to assess accuracy of these design criteria. An overview of the study approach and results are presented. Specific topics investigated include: emergency cooling air provisions, cold start-up, hot start-up, normal and transient bay temperatures, and altitude design. The results indicate that many existing design criteria are overly conservative. The study findings suggest that reform of the existing thermal specification process is needed. Many of these reforms are applicable to the general aerospace industry and may result in significant acquisition cost savings as a result of the trend toward usage of commercial electronic parts. The reforms suggested include a new performance based thermal specification approach that increases emphasis on aircraft usage and frequency of occurrence. New transient design criteria are also recommended.
Technical Paper

Electric 30,000 RPM Shave Spindle for C Frame Riveter and High Performance Compact Aerospace Drill

2000-09-19
2000-01-3017
Two spindles are discussed in this paper. The first spindle was installed on nine C-frame riveters on the 737/757 wing line at the Boeing Renton facility. Due to discontinuing the use of Freon coolant and cutting fluid, the C-frame riveters had difficulty shaving 2034 ice box rivets with the existing 6000 RPM hydraulic spindles. The solution was to install electric 30,000 RPM shave spindles inside the existing 76.2 mm (3 in.) diameter hydraulic cylinder envelope. The new spindle is capable of 4 Nm (35 in. lbs.) of torque at full speed and 110 kgf (250 lbs.) of thrust. Another design of interest is the Electroimpact Model 09 spindle which is used for 20,000 RPM drilling and shaving on wing riveting systems. The Model 09 spindle is a complete servo-servo drilling system all mounted on a common baseplate. The entire spindle and feed assembly is only 6.5″ wide.
Technical Paper

Gaugeless Tooling

1998-09-15
982147
At The Boeing Company, the advent of a Determinant Assembly (DA) program and the subsequent production of accurate fuselage subpanels created a need to be able to position subpanels accurately and repeatably during fuselage assembly. The tool engineering organization of The Boeing Company and Advanced Integration Technology, Inc. (AIT) as the prime contractor, are developing and installing automated positioning and alignment systems throughout major 747 fuselage assembly areas which enable DA techniques. The benefits of this assembly approach and this automated precision tooling are flexibility, assembly accuracy, ease of assembly and associated speed, reduced downtime for tool maintenance, and improved shop-floor ergonomics.
Technical Paper

Machine Readable Coding of 777 Wing Fastening Systems Tooling

1998-09-15
982133
This paper presents a detailed overview of the advantages and benefits of using 2-D barcodes, called Data Matrix codes, on Wing Fastening System (WFS) Tooling. This project was conducted on, but not limited to, the 777 Wing Fastening System (GEMCOR) tooling including the drills, fingers, and button dies. This paper will show how using Data Matrix codes to identify tooling will: Eliminate excessive downtime due to the operator using the incorrect tooling for a given tool setup. Reduce the cost associated with panel rework due to the use of incorrect tooling. Reduce the cost associated with excessive tool inventory or last minute ordering to keep up with production needs. Track tool life information for each specific tool. Provide operators with an easy to use tool setup reference document. And provide the factory with the ability to trace panel damage or defects back to the specific machine and exact tooling used.
Technical Paper

Airplane Flow-Field Measurements

1997-10-01
975535
The utility of airplane flow-field measurements for wind-tunnel testing is reviewed. The methods and equipment developed at Boeing for these measurements are also described. The details of the latest system are presented along with typical results from recent wind-tunnel tests. Using the latest system, flow-field surveys of airplane configurations in industrial low-speed and transonic wind tunnels provide spatial distributions of lift and drag (profile and induced) with good repeatability. In addition, the probe speed and survey region is optimized so that typical full-wake surveys take 20-30 minutes to complete. Final data, displayed as total pressure, velocity vectors, vorticity contours, and distributions of lift and drag (profile and induced) are available approximately 10 minutes after survey completion.
Technical Paper

Process Automation Through-Reality Graphics, Kitting, and Automated Panel Protection

1997-09-30
972806
This paper addresses process improvements through reality graphics (RG) aided by automated panel protection (APP) and tool kitting pertaining to automated wing riveting and fastening. This system provides an integrated display of numerical controlled media, automatic tool identification, and image files, combined with automated panel protection. Reality graphics (image files) within the NC program allow the machine operator to access portions of the NC program while attaching a support graphic. This would include safety hazards, unique panel differences, program start, and tool change information. Automated panel protection (APP) analyze process key characteristics, and perishable tool kits, and it monitors the installation of fasteners using multiple cameras mounted in strategic positions, taking real-time images. The APP detects incorrect tooling and possible panel damage, with little or no impact to the operational cycle time of the automated fastening equipment.
Technical Paper

Temperature Control Analysis for the U.S. Lab, Node 1, and Elements Attached to Node 1

1997-07-14
972564
The International Space Station (ISS) Temperature and Humidity Control (THC) system has been designed with the intent of supplying the air cooling needs of various elements from the U.S. Lab heat exchanger assembly. Elements without independent air cooling capability are known as “parasitic” elements; these are Node 1, the Cupola, and the Mini Pressurized Logistics Module (MPLM). Analysis results are presented which show expected temperatures in the MPLM, and Node 1, as various heat loads are present in the respective elements. Analyses within this paper are coordinated with the results obtained from the Development Test of the complex USL/Node 1 integrated ducting system. This test was conducted in the summer of 1995, at the McDonnell Douglas test facility in Huntington Beach, California.
Technical Paper

Space Station THC/IMV Development Test/Analysis Correlations and Flight Predictions

1997-07-14
972565
The International Space Station (ISS) Temperature and Humidity Control/Intermodule Ventilation (THC/IMV) system for the U.S. Lab provides required cooling air for the U.S. Lab and also provides “parasitic” cooling air for Node 1 and its attached elements. This scheme provides cooled air from the Lab THC directly to Node 1 and also to elements attached to Node 1, at different stages of Space Station assembly. A development test of the U.S. Lab and Node 1/attached elements' integrated THC/IMV ducting system was performed in the summer of 1995. This test included the U.S. Lab's development level Common Cabin Air Assembly (CCAA), which removes sensible and latent heat from the circulated and ducted cabin air. A referenced 1996 ICES Paper contains the initial correlation results. An analytical model has been developed, which has been used to predict flow and pressure drop performance of the system for several potential and actual changes from the Development Test configuration.
Technical Paper

Evolution to Lean Manufacturing A Case Study of Boeing of Spokane

1997-06-03
972235
The evolution of a manufacturing organization toward “Lean” manufacturing does not necessarily come cheaply or quickly. It is the experience at Boeing that technology and different visions can dramatically impact the evolutionary process-consuming great amounts of time and resources. The Boeing of Spokane case study, where aircraft floor panels are manufactured1, is but one of several case studies that suggests moving to “Lean” manufacturing is usually done in large steps, not small ones. These initial steps can be costly unless the systems (equipment and workforce) are flexible. Workforce flexibility is dependent on the attitude in the workforce as both touch and support labor move from their comfort zone to try new approaches and job descriptions. The workforce must be properly motivated to make the change. The equipment must also be flexible in adapting to new line layouts, product mixes, and process change or large cost penalties will be incurred.
Technical Paper

Development of Cold Working Process for 4340M Steel

1995-09-01
952167
A new process has been developed to cold work fastener holes on commercial aircraft flap tracks fabricated of 4340M steel. The process consists of pressing a high strength solid mandrel through a previously prepared hole in a defined manner. This process exhibits high tool life, low overall cost and eliminates the necessity for a final ream operation.
Technical Paper

747 Shuttle Carrier Aircraft/Space Shuttle Orbiter Mated Ground Vibration Test: Data via Transient Excitation and Fast Fourier Transform Analysis

1977-02-01
770970
The experimental procedure employed to define the natural modes of vibration of the 747 Shuttle Carrier Aircraft and Space Shuttle Orbiter mated configuration is described. A discussion of test results and comparison to structural analysis results is also included. Random transient signals were used as inputs to electromagnetic shakers to provide excitation to the mated vehicle test configuration. Acceleration signals were processed via the Fast Fourier Transform algorithm. Magnitude and phase transfer functions were formed and processed to produce modal frequencies, damping, and modal displacements.
Technical Paper

Engine Cycle Considerations for Future Transport Aircraft

1973-02-01
730345
Recent noise technology advancements have provided an increased understanding of true engine noise “floor” levels. This has led to changes in necessary engine cycle requirements for low-noise commercial airplanes. Updated prediction techniques for the core and jet noise sources are described, and lining technology improvements are reviewed. The need for further work in the core noise area is emphasized. The impact of these noise technology revisions on the best engine cycle for obtaining low noise is presented. It is concluded that engines with lower bypass ratios than previously anticipated may be acceptable.
Technical Paper

Aircraft Noise, Its Source and Reduction

1971-02-01
710308
Since the advent of the turbojet engine, there has been much research by aircraft and engine manufacturers into the source of aircraft noise and its reduction. A review of this research is presented delineating the transition from turbojet engines to turbofan engines to the high by-pass ratio engines being introduced today, and the progress that has been made. Application of the current state-of-the-art to existing airplanes through engine replacement, nacelle retrofit, and flight procedures are also discussed.
Technical Paper

Noise Implications for VTOL Development

1970-02-01
700286
Noise from the aircraft may prevent the establishment of VTOL ports near population centers-the locations which can provide a significant contribution to mass transportation. To determine how annoying these aircraft may be, a total community annoyance measure (TCAM) has been developed. The TCAM can indicate flight trajectories which minimize the annoyance of the aircraft and the type of aircraft which are acoustically acceptable for operations from a V/STOL port. Low disc loading rotors seem best for operation near terminals while low tip speed propellers are best for cruise.
Technical Paper

The Design of The U. S. SST for Low Community Noise

1970-02-01
700808
The need for achievement of low community noise levels has had a major influence on the configuration selected for the United States Supersonic Transport (Boeing 2707-300). The selection and development of design features which affect community noise are presented. The configuration has a relatively large span delta wing of moderate sweep and wing loading, with full span leading and trailing edge flaps. An all moving horizontal tail with geared flap is used for trim and control. The use of an unusually far aft center of gravity range is achieved through a fulltime stability augmentation system. All of these design features contribute to low drag at high lift, resulting in high takeoff performance and low levels of thrust required during flight over the community during both takeoff and landing. The resulting airplane has the versatility to use operational techniques which further reduce noise.
Technical Paper

High Altitude Performance of High Bypass Ratio Engines - an Airframe Manufacturer's Point of View

1969-02-01
690652
The traditional method of determining the net thrust of an engine in cruise is explained. It is shown to result in a satisfactory net thrust uncertainty for jet and low bypass ratio engines but to be unsuitable for high bypass ratio engines. A redefinition of net thrust results in a new thrust determination method, called continuity method, which yields acceptable levels of net thrust uncertainty. The new method no longer requires supporting tests in a simulated altitude facility. The question is raised whether in future programs the demonstration of guaranteed cruise performance of an engine should not be carried out in flight tests rather than in an altitude test facility.
Technical Paper

Incipient Failure Detection - The Detection of Certain Contaminating Processes

1967-02-01
670633
Three separate and distinct electrolytic and one galvanic process were identified by visual inspection, metallographic, electron microprobe, and x-ray diffraction analysis in a clocked, flip-flop integrated circuit flat pack and/or the associated printed circuit test jig (two on flat pack and two on circuit board). These four processes were all found to be detectable by the use of noise measurements in microvolts per root cycle at 1000 Hz (cycles per second). The direct current applied for noise measurement to the integrated circuit devices was 100 micro-amperes, as compared to the 6-8 milliamperes required for normal operation. After initial experimentation, the devices were caused to fail in a laboratory ambient environment, followed by an acceleration of the rate of electrolytic reaction through the use of essentially 100 percent relative humidity, versus the upper specification limit of 80 to 98% relative humidity.
Technical Paper

Problems of Maintaining Equipment Containing Integrated Circuits

1967-02-01
670639
This paper discusses some of the problems of developing and maintaining equipment containing integrated circuits. The problems discussed fall into three categories: (1)Processing, (2) Fault Isolation, and (3) Human Error. Quantitative study of these problems shows the highest number were experienced during preliminary-manufacturing and testing (screening and burn-in), with a decrease during final manufacturing checkout (board assembly and final testing) and a minimum during the system operational period. The paper concludes that maintainability is still the necessity it was even with the advent of reliable integrated circuits. This is substantiated by the many failures and defects encountered during manufacturing and development phases. Manufacturing economics force the consideration of maintainability in integrated circuit design.
X