Refine Your Search

Topic

Author

Search Results

Technical Paper

Opportunities, Challenges and Requirements for Use of Blockchain in Unmanned Aircraft Systems

2023-09-05
2023-01-1504
Unmanned Aircraft Systems (UAS) have been growing over the past few years and will continue to grow at a faster pace in future. UAS faces many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain, defined as a distributed ledger technology for the enterprise that features immutability, traceability, automation, data privacy, and security, can help address some of these challenges. However, blockchain also has certain challenges and is still evolving. Hence it is essential to study on how blockchain can help UAS. G-31 technical committee of SAE International responsible for electronic transactions for aerospace has published AIR 7356 [1] entitled Opportunities, Challenges and Requirements for use of Blockchain in Unmanned Aircraft Systems Operating below 400ft above ground level for Commercial Use. This paper is a teaser for AIR 7356 [1] document.
Technical Paper

Application of Mixed Reality (MR) Based Remote Assistance for Disposition & Resolution on Critical Nonconformance (NC) for Aircraft Production System during Covid or Post Covid Work Environment

2022-10-05
2022-28-0077
Currently, the Aviation industry uses traditional methods of communication, coordination, & human interaction to give disposition to resolve any kind of nonconformance occurrences which occur during manufacturing or operation of commercial or defense products. This involves increased in-person interaction and additional travel, especially to address the nonconformance issues arising at supplier plants or airports around the globe. During Covid and post-Covid environments, human interactions for the transfer of detailed information at different & distant manufacturing plant locations has been difficult, since support engineering teams (Example: Liaison, Product Review, Quality, Supplier Quality, and Manufacturing Engineering, and/or Service Engineering) have been working remotely.
Journal Article

Digital Data Standards in Aircraft Asset Lifecycle: Current Status and Future Needs

2021-03-02
2021-01-0035
The aerospace ecosystem is a complex system of systems comprising of many stakeholders in exchanging technical, design, development, certification, operational, and maintenance data across the different lifecycle stages of an aircraft from concept, engineering, manufacturing, operations, and maintenance to its disposal. Many standards have been developed to standardize and improve the effectiveness, efficiency, and security of the data transfer processes in the aerospace ecosystem. There are still challenges in data transfer due to the lack of standards in certain areas and lack of awareness and implementation of some standards. G-31 standards committee of SAE International has conducted a study on the available digital data standards in aircraft asset life cycle to understand the current and future landscapes of the needed digital data standards and identify gaps. This technical paper presents the study conducted by the G-31 technical committee.
Technical Paper

Automated Model Evaluation and Verification of Aircraft Components

2010-11-02
2010-01-1806
The trend of moving towards model-based design and analysis of new and upgraded aircraft platforms requires integrated component and subsystem models. To support integrated system trades and design studies, these models must satisfy modeling and performance guidelines regarding interfaces, implementation, verification, and validation. As part of the Air Force Research Laboratory's (AFRL) Integrated Vehicle and Energy Technology (INVENT) Program, standardized modeling and performance guidelines have been established and documented in the Modeling Requirement and Implementation Plan (MRIP). Although these guidelines address interfaces and suggested implementation approaches, system integration challenges remain with respect to computational stability and predicted performance over the entire operating region for a given component. This paper discusses standardized model evaluation tools aimed to address these challenges at a component/subsystem level prior to system integration.
Journal Article

Role of Power Distribution System Tests in Final Assembly of a Military Derivative Airplane

2009-11-10
2009-01-3121
Boeing has contracts for military application of twin engine airplanes generically identified in this paper as the MX airplane. Unlike previous derivatives, the MX airplanes are produced with a streamlined manufacturing process to improve cost and schedule performance. The final assembly of each MX airplane includes a series of integration tests, called factory functional tests (FFTs), which are modified from those of typical commercial versions and verify correctness of equipment installation and basic functionalities. Two airplanes have been through the production line resulting in a number of FFT lessons learned. Addressed are the power distribution lessons learned: 1) the expanded coverage of the basic automated power-on generation system test, 2) the need for a manual wire continuity test, 3) salient features of the power distribution tests, and 4) keys to make first pass power distribution test smooth and successful.
Technical Paper

Efficient Assembly Integration and Test (EAIT) Moves Theory to Practice at a System Level to Effect Lean Outcomes on the Shop Floor

2009-11-10
2009-01-3169
This paper will describe the Efficient Assembly Integration and Test (EAIT) system level project operated as a partnership among Boeing business units, universities, and suppliers. The focus is on the successful implementation and sharing of technology solutions to develop a model based, multi-product pulsed line factory of the future. The EAIT philosophy presented in this paper focuses on a collaborative environment that is tightly woven with the Lean Initiatives at Boeing's satellite development center. The prototype is comprised of a platform that includes a wireless instrumentation system, rapid bonding materials and virtual test of guidance hardware there are examples of collaborative development in collaboration with suppliers. Wireless tools and information systems are also being developed across the Boeing Company. Virtual reality development will include university partners in the US and India.
Journal Article

CFD Study of Ventilation and Carbon Dioxide Transport for ISS Node 2 and Attached Modules

2009-07-12
2009-01-2549
The objective of this study is to evaluate ventilation efficiency regarding to the International Space Station (ISS) cabin ventilation during the ISS assembly mission 1J. The focus is on carbon dioxide spatial/temporal variations within the Node 2 and attached modules. An integrated model for CO2 transport analysis that combines 3D CFD modeling with the lumped parameter approach has been implemented. CO2 scrubbing from the air by means of two ISS removal systems is taken into account. It has been established that the ventilation scheme with an ISS Node 2 bypass duct reduces short-circuiting effects and provides less CO2 gradients when the Space Shuttle Orbiter is docked to the ISS. This configuration results in reduced CO2 level within the ISS cabin.
Technical Paper

Multi-Fuel Reforming and Fuel Cell Systems for Aviation Applications: The Role of Bio-Diesel and its Synergy with Global Interests

2008-11-11
2008-01-2855
The rising cost of fuel prices, in part due to the perception of diminishing supplies of common fuelstocks, as well as worldwide attention to reducing emissions has pushed the need to explore the use of many alternative fuels. The aviation industry has been under recent scrutiny due to its contribution of greenhouse gas emissions (GHG). Current contribution of GHG by airplanes is relatively small, 2% of the total GHG emissions, but world air traffic is anticipated to continue to grow and may have a corresponding increase in emissions. Both commercial and government aviation sectors have efforts to seek ways to lower fuel consumption through efficiency and reduce emissions. Development of a suitable alternative fuel that can be seamlessly used in place of conventional jet fuel is desirable. A strategy to enable this goal is to be fuel flexible; utilizing an array of fuels from bio-diesel to current jet fuel.
Technical Paper

Laser Tracker Assisted Aircraft Machining and Assembly

2008-09-16
2008-01-2313
The patented (US 7,277,811 B1) Position Bar provides precise measurement, machining and drilling data for large Engineering and Tooling structure. The Position Bar also supports end item verification seamlessly in the same machining control code. Position Bar measurements are fast, accurate, and repeatable. The true centerline of the machine tool's spindle bearings are being measured to within .002 in a 20 foot cubic volume (20×20×20). True “I”, “J”, & “K” machine tool spindle positions are also precisely measured. Any Gantry or Post Mill Tool can be converted to a Coordinate Measurement Machine (CMM) with this laser tracker controlled Position Bar. Determinant Assembly (D.A.) holes, for fuselage and wing structures are drilled and then measured to within .006 in X, Y, & Z, over a 40 foot distance. Average laser tracker measurement time, per hole, is 2 seconds.
Journal Article

Shielding Effectiveness of Sodium Alanate and Ammonia Borane for Galactic Cosmic Ray and Solar Energetic Particle Event Environments

2008-06-29
2008-01-2163
Estimates of the effectiveness of the high-hydrogen containing materials, sodium alanate and ammonia borane, are made by calculating dose and dose equivalent for the 1977 solar minimum and 1970 solar maximum galactic cosmic ray spectra and for the large solar particle event spectra from the space era event of August 1972 and comparing their shielding effectiveness with that of polyethylene.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Journal Article

International Space Station (ISS) Major Constituent Analyzer (MCA) On-Orbit Performance

2008-06-29
2008-01-1971
This paper summarizes the first seven plus years of on-orbit operation for the Major Constituent Analyzer (MCA). The MCA is an essential part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer instrument in the US Destiny Laboratory Module, which provides critical monitoring of six major atmospheric constituents (nitrogen (N2), oxygen (O2), hydrogen (H2), carbon dioxide (CO2), methane (CH4), and water vapor (H2O)). These gases are sampled continuously and automatically in all United States On Orbit Segment (USOS) modules via the ISS Sample Delivery System (SDS). Continuous readout of the partial pressures of these gases is critical to verifying safe operation of the Atmosphere Re-vitalization (AR) system, Atmosphere Control System (ACS), and crew safety for Airlock Extravehicular Activity (EVA) preparation.
Technical Paper

Verification of Supply Chain Quality for Perishable Tools

2007-09-17
2007-01-3813
Increased emphasis on standardizing processes and controlling variability in production operations includes validating perishable tools used in daily operations. Even though dealing with reputable manufacturers, many factors including communication, custom specifications and personnel turnover can lead to the perpetuation of mistakes if errors are not discovered and corrective action implemented. However, inspection is costly and inspection costs far outweigh many item costs unless considering product defects. A beneficial balance may be obtained by employing statistical sampling techniques similar to ISO 2859 [1] to verify the quality of incoming tools.
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

A Comparison of the Radiation Environments in Deep Space

2007-07-09
2007-01-3114
Both humans and onboard radiosensitive systems (electronics, materials, payloads and experiments) are exposed to the deleterious effects of the harsh space radiations found in the space environment. The purpose of this paper is to present the space radiation environment extended to deep space based on environment models for the moon, Mars, Jupiter, and Saturn and compare these radiation environments with the earth's radiation environment, which is used as a comparative baseline. The space radiation environment consists of high-energy protons and electrons that are magnetically “trapped” in planetary bodies that have an intrinsic magnetic field; this is the case for earth, Jupiter, and Saturn (the moon and Mars do not have a magnetic field). For the earth this region is called the “Van Allen belts,” and models of both the trapped protons (AP-8 model) and electrons (AE-8 model) have been developed.
Technical Paper

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

2007-07-09
2007-01-3116
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed evaluations of radiation shielding properties are required. A model using a modern CAD tool ProE™, which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4π particle flux on a surface.
Technical Paper

“Fuel Flow Method2” for Estimating Aircraft Emissions

2006-08-30
2006-01-1987
In recent years there has been increasing interest in quantifying the emissions from aircraft in order to generate inventories of emissions for climate models, technology and scenario studies, and inventories of emissions for airline fleets typically presented in environmental reports. The preferred method for calculating aircraft engine emissions of NOx, HC, and CO is the proprietary “P3T3” method. This method relies on proprietary airplane and engine performance models along with proprietary engine emissions characterizations. In response and in order to provide a transparent method for calculating aircraft engine emissions non proprietary fuel flow based methods 1,2,3 have been developed. This paper presents derivation, updates, and clarifications of the fuel flow method methodology known as “Fuel Flow Method 2”.
Technical Paper

International Space Station (ISS) Major Constituent Analyzer (MCA) On-Orbit Performance

2006-07-17
2006-01-2092
This paper summarizes the first 5 plus years of on-orbit operation for the Major Constituent Analyzer (MCA). The MCA is an essential part of the International Space Station (ISS) Environmental Control and Life Support System (ECLSS). The MCA is a mass spectrometer instrument in the US Destiny Laboratory Module of the International Space Station. The MCA provides critical monitoring of six major atmospheric constituents (nitrogen (N2), oxygen (O2), hydrogen (H2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O)) sampled continuously and automatically in all United States On-Orbit Segment (USOS) modules via the Sample Distribution System (SDS). Sample lines have been routed throughout the U.S. modules with valves to facilitate software-automated sequential sampling of the atmosphere in the various modules.
Technical Paper

ISS: On-Board ECLSS Maintenance Activities and Launch Logistics

2006-07-17
2006-01-2062
The ISS U. S. ECLSS contains replaceable component designs to facilitate maintenance. A replaceable component is referred to as an Orbital Replacement Unit (ORU). Total U. S. ECLSS maintenance events that have occurred over the five years (2001-2005) of operations are summarized. A more detailed description is provided for the ECLSS Remove and Replace (R&R) maintenance activities that have occurred during the last two years and the associated logistics that supported these activities. Maintenance activities have replaced failed or degraded ORU's by Corrective Maintenance (CM) and replaced spent expendable ORU's by Preventative Maintenance (PM). Corrective maintenance is performed only when necessary and often on relatively short notice. Preventative maintenance is planned in advance and is normally performed at a specified ORU service time. The paper also describes activities and successful efforts to increase the expendable ORU service life.
Technical Paper

Microbial Characterization of Internal Active Thermal Control System (IATCS) Hardware Surfaces after Five Years of Operation in the International Space Station

2006-07-17
2006-01-2157
A flex hose assembly containing aqueous coolant from the International Space Station (ISS) Internal Active Thermal Control System (IATCS) consisting of a 2 foot section of Teflon hose and quick disconnects (QDs) and a Special Performance Checkout Unit (SPCU) heat exchanger containing separate channels of IATCS coolant and iodinated water used to cool spacesuits and Extravehicular Mobility Units (EMUs) were returned for destructive analyses on Shuttle return to flight mission STS-114. The original aqueous IATCS coolant used in Node 1, the Laboratory Module, and the Airlock consisted of water, borate (pH buffer), phosphate (corrosion control), and silver sulfate (microbiological control) at a pH of 9.5 ± 0.5.
X