Refine Your Search

Topic

Search Results

Technical Paper

Novel Acoustical Polyolefin Foams

2001-04-30
2001-01-1556
Novel acoustical materials have been developed. The materials are thermoplastic foams extruded from blends of a polypropylene (PP) resin with an ethylenic polymer resin. One material is an open-cell sheet product made from a blend of a PP resin and a polyolefin elastomer (POE). Another is a large-celled plank foam of substantially closed-cell structure made from a blend of a polypropylene resin and a low density polyethylene (PE) resin. The foam materials are of lightweight, hydrophobic, dust free, recyclable and withstand the temperatures prevailing in automotive uses.
Technical Paper

Separation of Non-Metallic Contaminants in Fluxless Melting and Refining of Magnesium Alloys

2000-03-06
2000-01-1125
Recent growth in automotive applications of magnesium die cast alloys has made the refining and recycling of magnesium scrap a key issue for the automotive and magnesium industries, if growth is to continue. Today, with only a few exceptions, commercially refined and recycled alloy is produced using a variety of flux-based processes. However, fluxless refining, has been the focus of growing interest, particularly for the in-house refining of scrap by the die cast producers. This paper summarizes the results of a study conducted to better understand the behavior of non-metallic contaminants in scrap melts and the requirements for their separation, using argon sparging. Brightness measurements were used to experimentally determine the distribution of non-metallic contaminants within scrap melts both before and after argon treatment.
Technical Paper

Performance Comparison of Plastic Composites with Metals for Vertical Body Panel Applications

1999-03-01
1999-01-0848
In 1998, approximately 57,000 Tonnes of plastic composites were utilized as body panels on cars and trucks in North America. Three material types, generically labeled SMC, RIM and Thermoplastic are vying to carve a market niche from steel which dominates the market place with an estimated volume of 1 million Tonnes per year. Since plastic body panels have higher material costs but lower tooling costs, they are primarily utilized when build volumes are less than 200,000 vehicles per year or specific composite performance capabilities are demanded. This paper reviews the various performance parameters required of a body panel material and the relative strengths of Aluminum, RIM, SMC, Steel and Thermoplastics to meet these demands. A decision making process is utilized which allows for a comparison between the different materials. Since cost is so critical, it is left as an independent variable.
Technical Paper

ELPO-Capable Polyurea RRIM Advancements for Automotive Body Panels

1998-02-23
980987
Continued development of Reinforced Reaction Injection Molding (RRIM) polyurea polymers for toughness, blister resistance and large-part processing as exterior vertical body panels has launched ELPO-compatible exterior outers into automotive assembly-line operations. This allows automotive OEM design to take advantage of the unique molding shapes for side outers and fenders while reducing weight, assembly (DFA) and time/operations costs (DFM). Polyurea RRIM body panels have been successful in meeting the demanding auto industry requirement for lightweight, damage-resistant exterior outer panels as an economical alternative to steel. Design freedom advantages, low prototype cost and tooling savings through predictive modelling have allowed the commercial use of RRIM body panels. This high-temperature-resistant polyurea RRIM composite allows on-line painting, including passing through the steel corrosion protection primer (E-coat) cure environments.
Technical Paper

Instrument Panel Design Architectures - Relation to Structure, Materials and Process

1997-02-24
970728
The increase in instrument panel design and functional performance requirements has resulted in a variety of structural architectures that have been utilized in different passenger vehicles, vans, and light trucks. Each architecture can be designed and engineered to meet corporate and federal requirements using different levels of integration, functionality consolidation, and assembly simplification. The present paper reviews three basic IP design architectures, i.e., traditional, hybrid, and structural, and discusses the performance requirement-functionality matrix in each case. Emphasis is given at explaining the role components play in the different architectures, defining their contribution to static, dynamic and crash performance and their relation to the overall assembly process and sequence. Performance and functionality requirements are linked to basic material characteristics that guide material selection for achieving design targets.
Technical Paper

SPS Crystalline Polymer: A New Material for Automotive Interconnect Systems

1997-02-24
970305
Syndiotactic Polystyrene (SPS) is a new semi-crystalline polymer under development by Dow Plastics. The material is completely different from conventional styrenics in structure, physical properties and synthetic method, and represents the basis for an entirely new family of materials based on crystalline polystyrene. SPS has a melting point of 270°C (520°F) combined with excellent resistance to moisture and automotive fluids. Additionally, SPS products exhibit exceptional electrical performance and competitive toughness and stiffness. A wide range of products have been formulated for specific applications including impact-modified and glass-reinforced grades. This paper was designed to discuss the performance attributes of SPS as they relate to use of this material in automotive, interconnect systems where a combination of heat resistance, chemical resistance, dimensional stability and enhanced processability are required.
Technical Paper

Design Advantages and Benefits of the Chrysler Dakota Fully Integrated Thermoplastic Instrument Panel

1996-02-01
960398
Today's interior systems design engineer has been challenged with providing significantly lighter, simpler and more cost-effective instrument panel (IP) design solutions, while simultaneously meeting rigorous occupant protection and quality standards. These issues provided the motivation behind the fully-integrated structural instrument panel design developed for Chrysler's Dodge Dakota Truck Platform. This total system design approach greatly depends on the stiffness and ductility of the engineering thermoplastic substrate and cross-sectional design for managing the energy of unrestrained occupants during frontal collisions. The structural IP consists of a fully integrated, three-piece monocoque thermoplastic structure that replaces the traditional retainer, air delivery ducts, steel beams and reinforcements typically used in IP designs.
Technical Paper

Engineering Development and Performance of the Chrysler Dakota Fully-Integrated Thermoplastic Instrument Panel

1996-02-01
960399
A fully-integrated thermoplastic structural instrument panel (IP) system will be implemented on Chrysler's Dodge Dakota Truck Platform. The structural IP consists of a three-piece monocoque thermoplastic injection molded structure that replaces the traditional retainer, air delivery ducts, steel beams and reinforcements typically used in IP designs. Ribbed thermoplastic bolster systems have been incorporated as part of the energy management system. The structural IP provides the required stiffness to satisfy noise, vibration, and harshness (NVH) quality targets and the necessary strength and rigidity to effectively meet FMVSS No. 208 requirements for managing occupant and passenger air bag (PAB) deployment loading during 48 km/h (30 mph) frontal crashes.
Technical Paper

A Business View of the Recycling of Plastics from Durable Goods

1996-02-01
961044
The recycling of plastics from end of useful life durable goods continues to evolve as an issue. Recycle strategies need to be based on a careful understanding of sustainability for both the environmental and business domains. The definitions and processes utilized in a recycle program can dramatically affect the economic structure. These recycle programs need to be carefully constructed to minimize cash costs. There is an emerging industry, recyclers, who may become an important link in the recycle supply chain.
Technical Paper

Material Selection Guidelines for Structural Instrument Panel Applications

1995-02-01
950642
Structural instrument panels are an excellent alternative to traditional constructions since they can provide substantial part consolidation, weight reduction, tool and cost savings, and manufacturing and assembly simplification. In structural panels, the main energy absorbing element for decelerating an unrestrained occupant is the plastic integrated retainer-structural duct. The role of the components in the instrument panel needs to be clearly understood for adequately engineering the system and properly selecting the polymeric material for optimum system performance in the different operating environments. The present paper discusses the performance of the structural instrument panel, the engineering and design requirements, and provides guidelines for selection of materials.
Technical Paper

New Developments in Low Density RIM Composites for Interior Trim

1994-03-01
940703
The use of low density reinforced Reaction Injection Molded (RIM) substrates for covered interior automotive articles continues to increase globally. Reduced party mass, consolidation of manufacturing steps (labor), and the use of aluminum tooling, instead of steel, are cited advantages that LD-RIM offers when compared to traditional wood based and thermoplastic materials. Two RIM processes are successfully being used to produce covered interior door panels. Low density structural RIM (LD-SRIM), utilizing conventional RIM equipment, involves the placement of a pre-cut fiberglass mat in the tool cavity prior to open-pour injection of the 2-stream liquid urethane components. Low density reinforced RIM (LD-RRIM), utilizing lance cylinder RIM equipment, incorporates reinforcing fibers, such as milled fiberglass or wollastonite, in the liquid resin component. The liquid resin containing reinforcing filler is injected with the isocyanate component into a closed mold.
Technical Paper

Syndiotactic Polystyrene: A New Polymer for High Performance Automotive Applications

1993-03-01
930088
Syndiotactic potystyrene (SPS) is a new semi-crystalline polymer under development by Dow Plastics, a business group of The Dow Chemical Company. The material is differentiated from conventional styrenic polymers in terms of microstructure and physical properties and represents the basis for an entirely new family of materials derived from crystalline polystyrene. SPS exhibits excellent thermal performance with a melting point of 270° C (520° F) combined with resistance to moisture and automotive fluids. Products produced from SPS demonstrate exceptional electrical performance, low specific gravity, competitive toughness and high modulus relative to other semi-crystalline engineering polymers. A wide range of products have been formulated including impact modified and glass reinforced resins for use in specific markets.
Technical Paper

Recycling Plastic Scrap in SRIM Composites

1993-03-01
930567
The objective of this paper will be to review a novel recycle process involving Structural Reaction Injection Molding(SRIM) which enables a variety of coarsely ground plastic recycle materials to be incorporated into the molded part. What makes this approach novel, is that flexural modulus of the fabricated parts are actually increased when the recycled granulate is employed in the part. This paper will present data for the recycle of a variety of automotive parts, including painted fascia, door skins, covered interior door panels, armrests and instrument panels along with composite bumper beams into the SRIM recycle core process. Resulting part economics will be reviewed along with potential applications to utilize this technology.
Technical Paper

A Recyclability Evaluation of Automotive Interior Components

1993-03-01
931029
The American public's desire to recycle and the predictions of future recycle mandates are motivating automotive OEMs and plastic suppliers to address the recycling of plastic materials. As a result, the OEMs and plastic industry groups have asked resin suppliers, automotive dismantlers and reprocessors to assist them in studying and developing solutions for the recovery of post-consumer automotive plastics and recycling those materials back into automotive applications. The Dow Chemical Company has been a participant in plastic industry sponsored projects and has initiated numerous research and development activities involving the recycling of automotive thermoplastic and thermoset materials, as well.
Technical Paper

Polymeric Reflective Materials for Automotive Applications

1993-03-01
930177
A highly reflective polymeric sheet has been invented which has a metallic appearance but contains no metal. The material can appear chrome-like, or be designed to transmit and reflect light for novel lens applications. The absence of metal waste streams and volatile organic emissions gives this technology significant environmental advantages over competitive methods of bright work or reflector fabrication. This unique optical material is non-corroding, and has the low thermal and electrical conductance of plastic. It is produced by coextruding a large number of alternating layers of polymers having a refractive index difference. This technology offers new degrees of freedom for light control in many applications including lighting reflectors, lenses, display panels, decorative trims, and energy management.
Technical Paper

Acoustical Evaluation of Automotive Headliner Composites with Various Adhesive Systems

1992-02-01
920501
Adhesive materials are required to bond cover fabrics to most molded interior headliner substrates. Several thermoplastic adhesive films are qualified and used at U.S. and Japanese OEM's. These adhesive films offer benefits such as convenience, cost effectiveness, excellent adhesive performance and process efficiency while reducing concerns of emissions and hazardous waste handling compared to prior bonding methods. The automotive headliner part is a multifunctional component of the vehicle's interior trim. One of the main headliner functions is to reduce the interior cabin noise. Various adhesive materials are used in a lamination process to form a composite headliner. The purpose of this study was to compare the effects of this lamination process and various alternative adhesive materials on the overall acoustical performance of the headliner composite. Various headliner samples were fabricated under controlled process conditions and tested by an independent acoustics testing lab.
Technical Paper

The Critical Contaminant Limits and Salt Water Corrosion Performance of Magnesium AE42 Alloy

1992-02-01
920073
The magnesium alloy AE42 (nominally a 4 % aluminum, 2 % rare earth alloy of magnesium) is a developmental die cast alloy with good strength and creep resistance at elevated temperatures. Standard salt spray corrosion tests have been used with controlled purity AE42 die castings to define the critical iron, nickel and copper contaminant levels below which excellent corrosion performance can be obtained. As previously observed with the magnesium alloys AZ91, AM60, and AS41, the critical iron content is dependent upon the manganese content of the alloy. While the iron:manganese tolerance for AE42 is about the same as that of AM60, the tolerance for the nickel and copper contaminants is greater than that of AZ91. When each of these contaminants is less than the critical level, the salt spray performance was equal to or better than die cast 380 aluminum and cold rolled steel.
Technical Paper

Evaluation of Thermoplastic Materials for Automotive Interior Trim Applications

1991-02-01
910519
Material and design engineers are constantly faced with the task of selecting the best thermoplastic material for interior trim applications. The purpose of this paper is to relate the results of physical property testing and part evaluation to their plastics selection process to allow a more optimized material choice for automotive interior applications. The thermoplastics that were evaluated in this study are the two largest volume plastics used today in interior trim, ABS (acrylonitrile, butadiene, styrene terpolymer) and polypropylene.
Technical Paper

Thermoplastic Adhesive Films for Automotive Interior Trim Applications

1991-02-01
910521
Joining dissimilar parts in automotive interior trim applications has been accomplished by utilizing mechanical fasteners, organic and water based adhesives, and more recently, thermoplastic polymers. Recent trends towards reducing solvent emissions and waste management problems, improving the consistency of adhesive application, integrating parts, lowering parts fabrication costs, and designing a specified bond level has increased the use of thermoplastic adhesive films as bonding agents in several applications. Initial efforts began over fifteen years ago with Dow Adhesive Films (DAF) being designed for bonding interior trim fabrics to various substrates. Films have subsequently been designed to improve performance of many interior trim parts in many ways such as: improving water resistance, allowing the part to be molded before installation, imparting a slip surface to a part, and supporting a non-woven fabric.
Technical Paper

Design and Application of Thermoplastic Adhesive Films for Headliner Composites

1991-02-01
910781
The construction of most automotive interior headliners requires an adhesive material to bond polyurethane foam-backed fabric to a molded headliner shell. More than ten years ago, The Dow Chemical Company qualified and began supplying a thermoplastic adhesive polymer film for headliner applications which replaced wet adhesive systems at several fabricators. DAF 899 adhesive film has gained acceptance in the industry due to excellent performance, convenience, and cost effectiveness without additional waste handling or volatile organic emission concerns. Recent advancements in headliner design such as additional recessed areas with more demanding contours, new substrate materials and the desire for more efficient operations created an opportunity to design improved adhesive films to meet the emerging industry demands.
X