Refine Your Search

Topic

Author

Search Results

Technical Paper

A real-world fleet test of the effects of engine oil on Low Speed Pre-Ignition occurrence in TGDi engine

2019-12-19
2019-01-2294
In the last decade, numerous studies have been conducted to investigate the mechanism of Low Speed Pre-Ignition (LSPI) in Turbocharged Gasoline Direct Injection (TGDi) engines. According to technical reports, engine oil formulations can significantly influence the occurrence of LSPI particularly when higher levels of calcium-based additives are used, increasing the tendency for LSPI events to occur. While most of the studies conducted to date utilized engine tests, this paper evaluates the effect of engine oil formulations on LSPI under real-world driving conditions, so that not only the oil is naturally aged within an oil change interval, but also the vehicle is aged through total test distance of 160,000 km. Three engine oil formulations were prepared, and each tested in three vehicles leading to an identical fleet totaling nine vehicles, all of which were equipped with the same TGDi engine.
Technical Paper

A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance through a Real-World Fleet Test

2019-04-02
2019-01-0299
Increasingly stringent vehicle emissions legislation is being introduced throughout the world, regulating the allowed levels of particulate matter emitted from vehicle tailpipes. The regulation may prove challenging for gasoline vehicles equipped with modern gasoline direct injection (GDI) technology, owing to their increased levels of particulate matter production. It is expected that gasoline particulate filters (GPFs) will soon be fitted to most vehicles sold in China and Europe, allowing for carbonaceous particulate matter to be effectively captured. However, GPFs will also capture and accumulate non-combustible inorganic ash within them, mainly derived from engine oil. Studies exist to demonstrate the impact of such ash on GPF and vehicle performance, but these commonly make use of accelerated ash loading methods, which themselves introduce significant variation.
Technical Paper

Developing Efficient Motorcycle Oils

2018-10-30
2018-32-0021
Motorcycle OEMs faced with stringent global fuel economy and emission regulations are being forced to develop new hardware and emissions control technologies to remain compliant. Motorcycle oils have become an enabling technology for the development of smaller, more efficient engines operating at higher power density. Many OEMs have therefore become reliant on lubricants to not only provide enhanced durability under more extreme operating conditions, but to also provide fuel economy benefits through reduced energy losses. Unlike passenger car oils that only lubricate the engine, motorcycle oils must lubricate both the engine and the drive train. These additional requirements place different performance demands versus a crankcase lubricant. The drive train includes highly loaded gears that are exposed to high pressures, in turn requiring higher levels of oil film strength and antiwear system durability.
Technical Paper

Low Speed Pre-Ignition (LSPI) Durability – A Study of LSPI in Fresh and Aged Engine Oils

2018-04-03
2018-01-0934
Downsized gasoline engines, coupled with gasoline direct injection (GDI) and turbocharging, have provided an effective means to meet both emissions standards and customers’ drivability expectations. As a result, these engines have become more and more common in the passenger vehicle marketplace over the past 10 years. To maximize fuel economy, these engines are commonly calibrated to operate at low speeds and high engine loads – well into the traditional ‘knock-limited’ region. Advanced engine controls and GDI have effectively suppressed knock and allowed the engines to operate in this high efficiency region more often than was historically possible. Unfortunately, many of these downsized, boosted engines have experienced a different type of uncontrolled combustion. This combustion occurs when the engine is operating under high load and low speed conditions and has been named Low Speed Pre-Ignition (LSPI). LSPI has shown to be very damaging to engine hardware.
Journal Article

Impact of Lubricating Oil Condition on Exhaust Particulate Matter Emissions from Light Duty Vehicles

2010-05-05
2010-01-1560
Limited technical studies to speciate particulate matter (PM) emissions from gasoline fueled vehicles have indicated that the lubricating oil may play an important role. It is unclear, however, how this contribution changes with the condition of the lubricant over time. In this study, we hypothesize that the mileage accumulated on the lubricant will affect PM emissions, with a goal of identifying the point of lubricant mileage at which PM emissions are minimized or at least stabilized relative to fresh lubricant. This program tested two low-mileage Tier 2 gasoline vehicles at multiple lubricant mileage intervals ranging from zero to 5000 miles. The LA92 cycle was used for emissions testing. Non-oxygenated certification fuel and splash blended 10% and 20% ethanol blends were used as test fuels.
Journal Article

The Effect of Viscosity Index on the Efficiency of Transmission Lubricants

2009-11-02
2009-01-2632
The world is firmly focused on reducing energy consumption and on increasingly stringent regulations on CO2 emissions. Examples of regulatory changes include the new United States Environmental Protection Agency's (U.S. EPA) fuel economy test procedures which were required beginning with the 2008 model year for vehicles sold in the US market. These test procedures include testing at higher speeds, more aggressive acceleration and deceleration, and hot-weather and cold-temperature testing. These revised procedures are intended to provide an estimate that more accurately reflects what consumers will experience under real world driving conditions. The U.S.
Technical Paper

The Use of Life Cycle Assessment with Crankcase Lubricants to Yield Maximum Environmental Benefit – Case Study of Residual Chlorine in Lubricant

2008-10-06
2008-01-2376
Life Cycle Assessment (LCA) is a methodology used to determine quantitatively the environmental impacts of a range of options. The environmental community has used LCA to study all of the impacts of a product over its life cycle. This analysis can help to prevent instances where a greater degree of environmental harm results when changes are made to products based on consideration of impacts in only part of the life cycle. This study applies the methodology to engine lubricants, and in particular chlorine limits in engine lubricant specifications. Concern that chlorine in lubricants might contribute to emissions from vehicle exhausts of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), collectively called PCDD/F, led to the introduction of chlorine limits in lubricant specifications. No direct evidence was available linking chlorine in lubricants to PCDD/F formation, but precautionary principles were used to set lubricant chlorine limits.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Technical Paper

Are the Traditional Methods for Determining Depletion of Total Base Number Providing Adequate Engine Protection?

2007-10-29
2007-01-4001
With the increasing use of modern, EGR-equipped, heavy-duty diesel engines and the use of lower sulfur and alternate fuels, such as biodiesel, lubricants are being exposed to a range of different compositions of acids. To complement the traditional detergent bases, todays lubricants have evolved to include a higher proportion of basic materials from amine-derived sources to aid in oxidation and soot control. This paper explores the impact of the different sources of acids, some of the issues they create and how they can be addressed, exemplified in a prototype CJ-4 lubricant formulation.
Technical Paper

Soot-Related Viscosity Increase - Further Studies Comparing the Mack T-11 Engine Test to Field Performance

2005-10-24
2005-01-3714
SAE 2004-01-3009 reported on work conducted to investigate the correlation between the Mack T-11 laboratory engine tests and vehicle field tests. It concluded that the T-11 test provides an effective screening tool to investigate soot-related viscosity increase, and the severity of the engine test limits provides a substantial margin of safety compared to the field. This follow-up paper continues the studies on the 2003 Mack CV713 granite dump truck equipped with an AI-427 internal EGR engine and introduces experimentation on a 2003 CX613 tractor unit equipped with an AC-460P cooled EGR engine. The paper further assesses the correlation of the field trials to the Mack T-11 engine test and reviews the impact of ultra low sulfur diesel (ULSD) and prototype CJ-4 lubricant formulations in these engines.
Technical Paper

Effects of Lubricant Derived Chemistries on Performance of the Catalyzed Diesel Particulate Filters

2005-05-11
2005-01-2168
Forthcoming on-highway 2005/2007 European and North American emission regulations will require modern diesel engines to be equipped with Diesel Particulate Filters (DPF) capable of trapping up to 99% of the exhaust particulate matter. Since diesel particulates (soot) accumulate in the filter over time, the overall system needs to be regenerated by attaining the ignition temperature of soot, which in the presence of oxygen is >600 °C. Catalyzed DPFs regenerate at temperatures as low as ∼300 °C. One of the major issues facing OEMs, aftertreatment system manufacturers, and lubricant formulators is the potential effects of the lubricant-derived ash deposits and their impact on a pressure increase across filters, as well as overall filter performance and its service characteristics.
Technical Paper

Field Experience with Selected Lubricants for Commercial Vehicle Manual Transmissions

2005-05-11
2005-01-2176
Laboratory testing is an essential part of product development. However, it usually only reflects a small portion of the experience that a lubricant may see in actual service conditions. Many laboratory tests are designed to only address one or two facets of what is deemed to be critical performance areas. Since it is difficult to cover all of the critical performance conditions problems sometimes arise in service that were not anticipated by the laboratory test. Or, conversely, some above average performance evolves during service that was not observed in a specific laboratory test. This paper highlights the overall performance of four manual transmission fluids approved or accepted by the manufacturer for this application. The evaluations were conducted in a city bus fleet with the test buses assigned to the same route for approximately 300,000 km over 30 months.
Technical Paper

The Impact of Lubricant and Fuel Derived Sulfur Species on Efficiency and Durability of Diesel NOx Adsorbers

2004-10-25
2004-01-3011
Global emission legislations for diesel engines are becoming increasingly stringent. While the exhaust gas composition requirements for prior iterations of emission legislation could be met with improvements in the engine's combustion process, the next issue of European, North American and Japanese emission limits greater than 2005 will require more rigorous measures, mainly employment of exhaust gas aftertreatment systems. As a result, many American diesel OEMs are considering NOx adsorbers as a means to achieve 2007+ emission standards. Since the efficacy of a NOx adsorber over its lifetime is significantly affected by sulfur (“sulfur poisoning”), forthcoming reductions in diesel fuel sulfur (down to 15 ppm), have raised industry concerns regarding compatibility and possible poisoning effects of sulfur from the lubricant.
Technical Paper

On-Board Sensor Systems to Diagnose Condition of Diesel Engine Lubricants - Focus on Soot

2004-10-25
2004-01-3010
Soot is a typical byproduct of the diesel fuel combustion process, and a portion of the soot inevitably enters an engine's crankcase. A key functionality of a diesel engine lubricant is to disperse and suspend soot so that larger-particle agglomerations are prevented. The role of soot agglomeration in abrasive engine wear and lubricant viscosity increase is the subject of a continuing investigation; however, what is generally known is that once an engine lubricant loses its ability to control soot and a rapid viscosity increase begins, the lubricant has reached the end of its useful life and should be changed to maximize engine performance and life. This issue of soot related viscosity increase is of such importance that the Mack T-11 engine test was developed as a laboratory tool to evaluate lubricants. The newly proposed Mack EO-N Premium Plus - 03 specification includes a T-11 performance requirement.
Technical Paper

Soot Related Viscosity Increase - A Comparison of the Mack T-11 Engine Test to Field Performance

2004-10-25
2004-01-3009
Soot related viscosity increase has been reported as a field issue in some diesel engines and this led to the development of the T-11 engine test, incorporated in the Mack EO-N Premium Plus 03 specification (014 GS 12037). This study compares T-11 laboratory engine tests and vehicle field tests and seeks to confirm the correlation between them. The findings are that the T-11 test provides an effective screening tool to investigate soot related viscosity increase, and the severity of the engine test limits gives a substantial margin of safety compared to the field. A complementary study was conducted in conjunction with this work that focuses on the successful application of electrochemical sensor technology to diagnose soot content and soot related viscosity increase. This will be the subject of a separate paper.
Technical Paper

Enhancement of the Sequence IIIG by the Study of Oil Consumption

2004-06-08
2004-01-1893
The Sequence IIIG is a newly developed 100 hour test used to evaluate the performance of crankcase engine oils in the areas of high temperature viscosity increase, wear, deposits, pumpability, and ring sticking for the North American GF-4 standard. Data from the ASTM Precision Matrix, completed in the spring of 2003, along with early reference data from the Lubricant Test Monitoring System (LTMS) showed unexpected test results for selected oils and indicated that percent viscosity increase and pumpability were highly correlated with oil consumption. This correlation led to an intensive study of the factors that influence oil consumption and an attempt to compensate for non-oil related oil consumption through a model based adjustment of the results. The study and scrutiny of the IIIG data has led to more uniform oil consumption in the test and improved test precision, and has eliminated the need for a correction equation based on non-oil related oil consumption.
Technical Paper

Engine Oil Effects on Friction and Wear Using 2.2L Direct Injection Diesel Engine Components for Bench Testing Part 2: Tribology Bench Test Results and Surface Analyses

2004-06-08
2004-01-2005
The effects of lubricating oil on friction and wear were investigated using light-duty 2.2L compression ignition direct injection (CIDI) engine components for bench testing. A matrix of test oils varying in viscosity, friction modifier level and chemistry, and base stock chemistry (mineral and synthetic) was investigated. Among all engine oils used for bench tests, the engine oil containing MoDTC friction modifier showed the lowest friction compared with the engine oils with organic friction modifier or the other engine oils without any friction modifier. Mineral-based engine oils of the same viscosity grade and oil formulation had slightly lower friction than synthetic-based engine oils.
Technical Paper

Review of Exhaust Emissions of Compression Ignition Engines Operating on E Diesel Fuel Blends

2003-10-27
2003-01-3283
Recently, research and testing of oxygenated diesel fuels has increased, particularly in the area of exhaust emissions. Included among the oxygenated diesel fuels are blends of diesel fuel with ethanol, or E diesel fuels. Exhaust emissions testing of E diesel fuel has been conducted by a variety of test laboratories under various conditions of engine type and operating conditions. This work reviews the existing public data from previous exhaust emissions testing on E diesel fuel and includes new testing performed in engines of varied design. Emissions data compares E diesel fuel with normal diesel fuel under conditions of different engine speeds, different engine loads and different engine designs. Variations in performance under these various conditions are observed and discussed with some potential explanations suggested.
Technical Paper

Developing Next Generation Axle Fluids, Part III: Laboratory CAFE Simulation Test as a Key Fluid Development Tool

2003-10-27
2003-01-3235
The regulatory drive for emission reductions, increased fuel costs, and likely increases in Corporate Average Fuel Economy (CAFE) requirements have made fuel efficiency a key issue for North American vehicle manufacturers and marketers. At the same time the popularity of sport utility vehicles and light trucks has made it more difficult to achieve CAFE objectives. In order to accommodate both public vehicle preference and government mandated CAFE requirements automobile manufacturers are seeking all available means to increase fuel economy through advanced system design, engineered materials, and improved lubricant technology. Axle lubricants can have a significant impact on fuel economy; moreover, axle lubricants can be tailored to deliver maximum operating efficiency over either specific or wide ranges of operating conditions.
Technical Paper

Counteracting detrimental EGR effects with diesel fuel additive

2003-05-19
2003-01-1915
A new generation of fluid technology using novel diesel fuel detergent/dispersant chemistry provides a multitude of beneficial effects to the diesel engine, especially the latest model designs. In addition to improved injector, valve and combustion chamber deposit removal, the additive restores power, fuel economy, performance and emission levels1. Positive observations have also been documented along with improved performance concerning crankcase lube viscosity, soot loading and TBN retention. An even greater added benefit is the inherent capability of the fuel additive to deal with several EGR issues now prominent with the introduction of new engines. Recent research, reported herein, has uncovered the extensive efficacy of this chemistry for piston durability and neutralization of ring corrosion phenomena. All of the beneficial additive attributes are further enhanced with increased oxidative and thermal fuel stability and no loss of filterability.
X